Simulating an Active Target Time Projection Chamber

Alicia Postuma (she/her)

WNPPC 2022

Mount Allison University

- Experimental goal: study Compton scattering on helium-3 and helium-4 to measure electric and magnetic polarizabilities of the neutron [1]
- Active target determines energy, angle of recoil particle [2]

- Experimental goal: study Compton scattering on helium-3 and helium-4 to measure electric and magnetic polarizabilities of the neutron [1]
- Active target determines energy, angle of recoil particle [2]

- Experimental goal: study Compton scattering on helium-3 and helium-4 to measure electric and magnetic polarizabilities of the neutron [1]
- Active target determines energy, angle of recoil particle [2]

- Experimental goal: study Compton scattering on helium-3 and helium-4 to measure electric and magnetic polarizabilities of the neutron [1]
- Active target determines energy, angle of recoil particle [2]

 γ : Incident beam energy (known) ³*He*: Target at rest

 γ' : Measured in photon calorimeter

- Experimental goal: study Compton scattering on helium-3 and helium-4 to measure electric and magnetic polarizabilities of the neutron [1]
- Active target determines energy, angle of recoil particle [2]

 γ : Incident beam energy (known) ³*He*: Target at rest γ' : Measured in photon calorimeter ³*He'*: Not yet detected...

- Experimental goal: study Compton scattering on helium-3 and helium-4 to measure electric and magnetic polarizabilities of the neutron [1]
- Active target determines energy, angle of recoil particle [2]

 γ : Incident beam energy (known) ³*He*: Target at rest γ' : Measured in photon calorimeter ³*He'*: Not yet detected...

Time Projection Chamber + photon calorimeters \longrightarrow overdetermined kinematics!

- Kinetic energy of target recoil ionizes gas
- Electrons drift through \vec{E} field in active volume and are detected by anode
- Target recoil energy and track can be reconstructed from anode readout [3]

- Kinetic energy of target recoil ionizes gas
- Electrons drift through \vec{E} field in active volume and are detected by anode
- Target recoil energy and track can be reconstructed from anode readout [3]

Working Principle of a TPC

- Kinetic energy of target recoil ionizes gas
- Electrons drift through \vec{E} field in active volume and are detected by anode
- Target recoil energy and track can be reconstructed from anode readout [3]

Working Principle of a TPC

- Kinetic energy of target recoil ionizes gas
- Electrons drift through \vec{E} field in active volume and are detected by anode
- Target recoil energy and track can be reconstructed from anode readout [3]

- Kinetic energy of target recoil ionizes gas
- Electrons drift through \vec{E} field in active volume and are detected by anode
- Target recoil energy and track can be reconstructed from anode readout [3]

- Kinetic energy of target recoil ionizes gas
- Electrons drift through \vec{E} field in active volume and are detected by anode
- Target recoil energy and track can be reconstructed from anode readout [3]

- Kinetic energy of target recoil ionizes gas
- Electrons drift through \vec{E} field in active volume and are detected by anode
- Target recoil energy and track can be reconstructed from anode readout [3]

Implementation in Geant4

1	//main constructor function
2	G4VPhysicalVolume*
	A2TPC::Construct(G4LogicalVolume*
	MotherLogical, G4double Z0) {
3	<pre>fMotherLogic=MotherLogical;</pre>
4	G4cout << "A2TPC::Construct()
	<pre>Building_the_TPC." <<g4endl;< pre=""></g4endl;<></pre>
5	
6	<pre>ReadParameters("data/TPC.dat");</pre>
7	<pre>DefineMaterials();</pre>
8	MakeVessel();
9	MakeAnodeCathode();
0	MakeSensitiveDetector();
1	<pre>MakeElectricField();</pre>
2	<pre>PlaceParts();</pre>
3	
.4	fMyPhysi = new G4PVPlacement(0,
	G4ThreeVector(0,0,Z0) ,
	fMyLogic, "TPC",
	fMotherLogic, <pre>false</pre> , 1,
	<pre>fIsOverlapVol);</pre>
5	<pre>return fMyPhysi;</pre>
6	}

# Time Projection Chamber Parameters	
# ACP 20 May 2021	
#	3
# Vessel dimensions in mm	5
# length of main cell	4
# radius of main cell	
# length of conical part of main cell	
# wall thickness	5
# extension length	~
# extension inner radius	6
# Be window thickness:	7
TPC-Dim: 311.0 100.0 1.5 50.0 200.0 25.0 0.5	
#	8
# Anode specifications in mm	0
# Thickness of G-10 layer	5
# Thickness of Cu layer	10
# Distance of anode from cell end	11
# Angular sections	11
Anode-Dim: 1.5 0.02 25 16	12
# # Cathode specifications in mm	10
# Thickness of steel layer	13
# Thickness of aluminum layer	14
# Distance to cathode from cell end	
Cathode-Dim: 1.0 0.01 25	
#	
# Run Mode 0=no, 1=yes	
# Check overlaps	
Run-Mode: 0 1	

//main constructor function

2 G4VPhysicalVolume*

A2TPC::Construct(G4LogicalVolume* MotherLogical, G4double Z0) { fMotherLogic=MotherLogical; G4cout<< "A2TPC::Construct()_ Building_the_TPC." <<G4endl;

```
ReadParameters("data/TPC.dat");
DefineMaterials();
MakeVessel();
MakeAnodeCathode();
MakeSensitiveDetector();
MakeElectricField();
PlaceParts();
```

```
fMyPhysi = new G4PVPlacement(0,
G4ThreeVector(0,0,Z0),
fMyLogic, "TPC",
fMotherLogic, false, 1,
fIsOverlapVol);
return fMyPhysi;
```

15 16 }

1

1	//main constructor function
2	G4VPhysicalVolume*
	A2TPC::Construct(G4LogicalVolume*
	MotherLogical G4double 70) {
З	fMotherLogic=MotherLogical:
4	Checut (ADTRC : + Construct ()
4	G4COULC A2IPC::CONSTRUCT()
	Building the TPC. " << G4 endl;
5	
6	<pre>ReadParameters("data/TPC.dat");</pre>
7	<pre>DefineMaterials();</pre>
8	MakeVessel();
9	MakeAnodeCathode();
10	<pre>MakeSensitiveDetector();</pre>
11	<pre>MakeElectricField();</pre>
12	<pre>PlaceParts();</pre>
13	
14	fMyPhysi = new G4PVPlacement(0,
	G4ThreeVector(0,0,Z0),
	fMvLogic, "TPC".
	fMotherLogic false 1
	fIcOworlopVol);
4 5	IISUVEIIAPVOI);
15	return iMyPhysi;
16	}

1 2

3 4

9

10 11

12 13

14

15

16

//main constructor function
G4VPhysicalVolume*
A2TPC::Construct(G4LogicalVolume*
MotherLogical, G4double Z0) {
fMotherLogic=MotherLogical;
G4cout << "A2TPC::Construct()
<pre>Building_the_TPC." <<g4endl;< pre=""></g4endl;<></pre>
<pre>ReadParameters("data/TPC.dat");</pre>
<pre>DefineMaterials();</pre>
MakeVessel();

MakeAnodeCathode();
MakeSensitiveDetector();

MakeElectricField();

PlaceParts();

```
fMyPhysi = new G4PVPlacement(0,
G4ThreeVector(0,0,Z0),
fMyLogic, "TPC",
fMotherLogic, false, 1,
fIsOverlapVol);
return fMyPhysi;
}
```

1	//main constructor function
2	G4VPhysicalVolume*
	A2TPC::Construct(G4LogicalVolume*
	MotherLogical, G4double Z0) {
3	fMotherLogic=MotherLogical;
4	G4cout << "A2TPC::Construct()
	<pre>Building_the_TPC." <<g4endl;< pre=""></g4endl;<></pre>
5	
6	<pre>ReadParameters("data/TPC.dat");</pre>
7	<pre>DefineMaterials();</pre>
8	MakeVessel();
9	MakeAnodeCathode();
10	MakeSensitiveDetector();
11	<pre>MakeElectricField();</pre>
12	<pre>PlaceParts();</pre>
13	
14	fMyPhysi = new G4PVPlacement(0,
	G4ThreeVector(0,0,Z0) ,
	fMyLogic, "TPC",
	fMotherLogic, false, 1,
	<pre>fIsOverlapVol);</pre>
15	<pre>return fMyPhysi;</pre>
16	}

6 7

8

9

11

12

13

14

15

16 }

1	//main constructor function
2	G4VPhysicalVolume*
	A2TPC::Construct(G4LogicalVolume*
	MotherLogical, G4double Z0) {
3	fMotherLogic=MotherLogical;
4	G4cout << "A2TPC::Construct()
	<pre>Building_the_TPC." <<g4endl;< pre=""></g4endl;<></pre>
5	

```
ReadParameters("data/TPC.dat");
DefineMaterials();
MakeVessel();
MakeAnodeCathode();
MakeSensitiveDetector();
MakeElectricField();
PlaceParts();
```

```
fMyPhysi = new G4PVPlacement(0,
G4ThreeVector(0,0,Z0),
fMyLogic, "TPC",
fMotherLogic, false, 1,
fIsOverlapVol);
return fMyPhysi;
```

1 2

3 4

9

10 11

12 13

14

15

16 }

//main constructor function
G4VPhysicalVolume*
A2TPC::Construct(G4LogicalVolume*
MotherLogical, G4double ZO) {
fMotherLogic=MotherLogical;
G4cout << "A2TPC::Construct()_
<pre>Building_the_TPC." <<g4endl;< pre=""></g4endl;<></pre>
<pre>ReadParameters("data/TPC.dat");</pre>
<pre>DefineMaterials();</pre>

```
DefineMaterials();
MakeVessel();
MakeAnodeCathode();
MakeSensitiveDetector();
MakeElectricField();
PlaceParts();
```

```
fMyPhysi = new G4PVPlacement(0,
G4ThreeVector(0,0,Z0),
fMyLogic, "TPC",
fMotherLogic, false, 1,
fIsOverlapVol);
return fMyPhysi;
```


//main constructor function

2 G4VPhysicalVolume*

1

15

16 }

A2TPC::Construct(G4LogicalVolume* MotherLogical, G4double Z0) { fMotherLogic=MotherLogical; G4cout<< "A2TPC::Construct() Building_the_TPC." <<G4endl;

```
ReadParameters("data/TPC.dat");
DefineMaterials();
MakeVessel();
MakeAnodeCathode();
MakeSensitiveDetector();
MakeElectricField();
PlaceParts();
```

```
fMyPhysi = new G4PVPlacement(0,
G4ThreeVector(0,0,Z0),
fMyLogic, "TPC",
fMotherLogic, false, 1,
fIsOverlapVol);
return fMyPhysi;
```


ntpc: Number of anode segments hit
itpc: ID of anode sections hit
qtpc: Charge deposited in hit
ttpc: Time of hit

Initial data were inconsistent with functionality of a TPC?!

 $\rightarrow\,$ Most hits deposit positive charge?!

Initial Simulated Data

- $\rightarrow\,$ Most hits deposit positive charge?!
- $\rightarrow\,$ Most hits are at exactly time zero?!

- $\rightarrow\,$ Most hits deposit positive charge?!
- $\rightarrow\,$ Most hits are at exactly time zero?!
- $\rightarrow\,$ Few hits recorded anywhere in the anode?!

Following tracking information for electrons shows that they are not being drifted through the electric field.

Step	Х	Y	Z	KineE	dEStep	TrakLeng
0	0 nm	0 nm	544 nm	57.3 eV	0 eV	0 fm
1	-3.69 nm	4.13 nm	545 nm	0 eV	57.3 eV	7.52 nm
2	-3.69 nm	4.13 nm	545 nm	0 eV	0 eV	7.52 nm
*****	*******	*******	*******	*******	*******	********

Geant4 "low energy" range [4] Drift electron energies 100 eV - 1GeV <1 eV

- Custom definition of electron drift in G4FastSimulation [5] A2DriftModel
- Interface this with the rest of the A2Geant4 program

Simulate in Magboltz [6]:		Implement in Geant4 [7]:
Drift velocity	\longrightarrow	Travel time of e^-
Diffusion coeffients	\longrightarrow	Final position of e^-

1	<pre>class A2DriftModel : public G4VFastSimulationModel {</pre>
2	public:
3	A2DriftModel(G4String, G4Region*, A2Target*,A2SD*);
4	~A2DriftModel();
5	<pre>virtual G4bool IsApplicable(const</pre>
	G4ParticleDefinition&); //return true for e-
6	<pre>virtual G4bool ModelTrigger(const G4FastTrack&);</pre>
	<pre>//trigger if particle energy is below 1 keV</pre>
7	<pre>virtual void DoIt(const G4FastTrack&,</pre>
	G4FastStep&); //pass control of particle to
	the model
8	//I did NOT name this function, the name comes
	from the base class
9	protected:
10	<pre>virtual void Transport(); //drift electron in</pre>
	field
11	<pre>void ProcessHit(); //create hit in sensitive</pre>
	detector
12	};

Improved Simulated Data

 $\rightarrow\,$ Large amount of negative charge deposited in TPC

- $\rightarrow\,$ Large amount of negative charge deposited in TPC
- $\rightarrow\,$ Realistic time distribution

- $\rightarrow\,$ Large amount of negative charge deposited in TPC
- $\rightarrow\,$ Realistic time distribution
- $\rightarrow\,$ Many different anode sections hit

- 1. Recoil energy
- 2. Recoil polar angle

- 1. Recoil energy
- 2. Recoil polar angle

- 1. Recoil energy
- 2. Recoil polar angle

 \rightarrow Apply to Compton scattering

T = A + BQ

- 1. Recoil energy
- 2. Recoil polar angle

 \rightarrow Apply to Compton scattering

Recoil Energy (MeV)

- 1. Recoil energy
- 2. Recoil polar angle

- 1. Recoil energy
- 2. Recoil polar angle

- 1. Recoil energy
- 2. Recoil polar angle

- 1. Recoil energy
- 2. Recoil polar angle

$$tan\theta = \frac{\Delta x}{v_{drift}\Delta t}$$

- 1. Recoil energy
- 2. Recoil polar angle

 \rightarrow Apply to Compton scattering

Recoil Polar Angle (deg)

Energy: Compton Scattering 100 MeV

Recoil Energy (MeV)

Angle: Compton Scattering 100 MeV

Recoil Polar Angle (deg)

 $\bullet~\mbox{Low energy} + \mbox{high pressure} \rightarrow \mbox{short tracks}$

- $\bullet~\mbox{Low energy} + \mbox{high pressure} \rightarrow \mbox{short tracks}$
- \bullet Energy-angle relation \rightarrow anode projection even shorter

- $\bullet~\mathsf{Low}~\mathsf{energy}+\mathsf{high}~\mathsf{pressure}\to\mathsf{short}~\mathsf{tracks}$
- $\bullet\,$ Energy-angle relation \rightarrow anode projection even shorter
- Beam width pprox projection length $ightarrow \sigma(x) = x$

- $\bullet~\mbox{Low energy}$ + high pressure \rightarrow short tracks
- $\bullet\,$ Energy-angle relation \rightarrow anode projection even shorter
- Beam width pprox projection length $ightarrow \sigma(x) = x$

Possible solutions:

Lower pressure: longer tracks \iff lower event rate New anode design?

- TPC as active target gives good reconstruction of energy
 - $\rightarrow~$ Still the best option for the experiment
- Experimental kinematics limit feasibility of angular reconstruction
- Use Geant4 simulation and reconstruction framework to find solutions
 - $\rightarrow~$ Optimize pressure, anode design

Compton scattering on helium-3 in the Time Projection Chamber = measurement of neutron polarizabilties!

My thanks to...

- Dr. David Hornidge
- Dr. Vahe Sokhoyan TPC project guidance
- Dr. Philippe Martel general computing questions
- Dr. Evgeny Maev PNPI liaison
- Mount Allison University, A2, PNPI, NSERC

We recognize and acknowledge that this research was carried out on the unceded lands of the Mi'kmaw people.

References

- A2-Collaboration, Proposal for the experiment: Compton scattering on the He isotopes with an active target, MAMI PAC, 2013.
- R3B Collaboration, Technical report for the design, construction and commissioning of the Active Target for FAIR (ACTAF) for the R3B experiment, Technical report, 2016, FAIR/NUSTAR/R3B/ACTAF.
- Y. Ayyad, D.Bazin, S. Beceiro-Novo, M. Cortesi, and W. Mittig, **EPJ** A54(2018).
- Geant4 Collaboration, Book for Application Developers, Release 10.3, 2017.
- A. Zaborowska, Fast simulation, Geant4 Advanced Course at CERN, 2020.
- D. Pfeiffer et al., **NIM** A935, 121 (2019).
- F. Metzger, TPC-Signal Simulation, presentation slides, 2020.

EXTRA SLIDES

- Dimensions from schematics by Evgeny Maev (PNPI)
- Helium-3 or Helium-4
- Customizable gas pressure (20-25 bar)
- Uniform 2 kV/cm electric field
- Walls 8 mm aluminum

Gaussians based on work by Fabian Metzger.

Position:

$$\mu_{x} = x_{0}, \mu_{y} = y_{0}$$

$$\sigma_{x} = \sigma_{y} = \tilde{D}_{T} \sqrt{|z_{0} - z_{anode}|}$$

- Mean is initial (x,y) position of simulated electron
- Standard deviation depends on transverse diffusion coefficient and distance to anode

Time:

$$\mu_t = \frac{|z_0 - z_{anode}|}{v_{drift}}$$
$$\sigma_t = \frac{\tilde{D}_L}{v_{drift}} \sqrt{|z_0 - z_{anode}|}$$

- Mean is distance to anode divided by drift velocity
- Standard deviation depends on lateral diffusion coefficient, drift velocity, and distance to anode

Recoil KE: Compton Scattering 100 MeV

Track Length vs Kinetic Energy: 25 bar

Anode Projection: Compton Scattering 100 MeV

Tracks and Anode Projections

Suggested Anode Design

- Inner circle entirely encompasses the beam
- No particle track extends beyond the outer radius
- The majority of Compton scattering events cause hits in the ring and at least one outer section

Experimenting with Angular Reconstruction

Optimizing Pressure

Rates in the ACTAM TPC

