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Motivation

I Explore the N = Z line which diverges from the valley of stability.
I Use magic nuclei which have complete shells of neutrons, protons.
I Focus on nucleus pairs which exhibit structure similarity under

nucleon exchange.

I The generalization of charge independence for the strong interaction to
the effective nuclear interaction providing mirror symmetry.

I Isospin-nonconserving interactions break this mirror symmetry.
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Mirror Asymmetry

Spieker et al., Physical Review C, 2019
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Where to focus?

I Each of these ideas are combined in the approved 55Ni and 55Co
experiment at TRIUMF.

I 55Ni and 55Co are:

I identical under a single nucleon exchange,
I adjacent to the doubly magic 56Ni,
I and located alongside the N = Z line.

I Where production is achieved via fusion evaporation:

I 20Na(40Ca,αp)55Ni
I 20Ne(40Ca,αp)55Co
I 20Na is a radioactive beam and 20Ne is a stable beam.

I DSAM techniques will be applied in tandem with TIGRESS, TIP and
the CsI Ball.
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Experimental Goals

I Identify the energy, spins, and parities of excited states in 55Ni beyond
those previously reported.

I Establish Mirror Energy Differences with comparison against 55Co.

I Provide reliable data for Shell Model calculations for f7/2 hole states
near 56Ni.

I Measurements of EM transition rates for the states in 55Ni and 55Co.

I This will require measuring:

I Energies of excited states.
I Angular correlations and polarization of γ-rays.
I Lifetimes via DSAM
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Geant4

I The required framework already exists for this experiment that will be
used to infer observations from experimental data.

I The beam type/energy, target type, desired reaction, TIGRESS, CsI
Ball, TIP and DAQ processing time can all be factored in.

I Simulation parameters:

I Projectile: 20Na at 100 MeV
I Target: 40Ca with 1.91 mg/cm2 (1.23 µm) thickness
I Backing: 197Au with 28.76 mg/cm2 (14.9 µm) thickness
I Reaction products: α, p, and 2882 keV γ-ray
I Lifetime varied: 10, 20, 50, 100, 200, 400, 600, 800, 1000 fs
I Q Values: 11.788 MeV for formation, and net −3.968 MeV for

evaporation
I Simulation ran for 107 reactions
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Line Shapes for Varying Lifetimes
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The χ2 Fit Approach

I Better for stable beams with good statistics.

I Assumes that for k data bins, with random variable xi , and parameter
vector α, that the data is fit by the product of Gaussians:

L(α; xi ) =
k∏

i=1

f (α; xi ) (1)

I Which has a maximum when the χ2 is minimized, where yi is a
histogram of the mean values predicted, ni is the observed data, and
σi is the estimated variance for yi :

χ2 =
k∑

i=1

(ni − yi (α, xi ))2

σ2i
(2)

I Estimates are constructed by comparing Geant4-simulated data to
experimental data.
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The Maximum Likelihood Approach

I Better for radioactive beams with low statistics.

I Use an alternate likelihood function where ni is the data and λi is the
expected value for channel i :

L(λi ; ni ) =
k∏

i=1

λnii exp(−λi )
ni !

(3)

I Where the bin-by-bin derivative is given by:

∂ lnL(λi ; ni )

∂λi
= ni

1

λi
− 1 = 0 (4)

I Likelihood function maximized by λ̂i = ni for λi , ni > 0
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Centroid Change with Ring Number

Ed = Eo

√
1− β2

1− β cos θ
(5)
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Centroid Analysis

I The centroid can be found via:

Cx =

∑
i xini∑
i ni

(6)

I For position xi and counts ni .

I Where the variance is provided by:

σ2 =

∑
i (ni (xi − Cx))2∑

i ni − 1
(7)

I For N =
∑

i ni total samples.

I Finally, the error for the centroid is given by:

Cerr =
σ√
N

(8)
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