Exploring Mirror Asymmetry with ⁵⁵Ni and ⁵⁵Co.

Tyson Schilbach

Department of Physics, Simon Fraser University

Explore the N = Z line which diverges from the valley of stability.

Explore the N = Z line which diverges from the valley of stability.
 Use magic nuclei which have complete shells of neutrons, protons.

Explore the N = Z line which diverges from the valley of stability.

Use magic nuclei which have complete shells of neutrons, protons.
 Focus on nucleus pairs which exhibit structure similarity under nucleon exchange.

• Explore the N = Z line which diverges from the valley of stability.

▶ Use *magic nuclei* which have complete shells of neutrons, protons.

- Focus on nucleus pairs which exhibit structure similarity under nucleon exchange.
 - The generalization of charge independence for the strong interaction to the effective nuclear interaction providing mirror symmetry.

- Explore the N = Z line which diverges from the valley of stability.
- ▶ Use *magic nuclei* which have complete shells of neutrons, protons.
- Focus on nucleus pairs which exhibit structure similarity under nucleon exchange.
 - The generalization of charge independence for the strong interaction to the effective nuclear interaction providing mirror symmetry.
 - Isospin-nonconserving interactions break this mirror symmetry.

T. Schilbach (SFU)

WNPPC 2022

Mirror Asymmetry

Spieker et al., Physical Review C, 2019

Each of these ideas are combined in the approved ⁵⁵Ni and ⁵⁵Co experiment at TRIUMF.

- Each of these ideas are combined in the approved ⁵⁵Ni and ⁵⁵Co experiment at TRIUMF.
- ▶ ⁵⁵Ni and ⁵⁵Co are:

- Each of these ideas are combined in the approved ⁵⁵Ni and ⁵⁵Co experiment at TRIUMF.
- ▶ ⁵⁵Ni and ⁵⁵Co are:
 - identical under a single nucleon exchange,

- Each of these ideas are combined in the approved ⁵⁵Ni and ⁵⁵Co experiment at TRIUMF.
- ⁵⁵Ni and ⁵⁵Co are:
 - identical under a single nucleon exchange,
 - ▶ adjacent to the *doubly magic* ⁵⁶Ni,

- Each of these ideas are combined in the approved ⁵⁵Ni and ⁵⁵Co experiment at TRIUMF.
- ▶ ⁵⁵Ni and ⁵⁵Co are:
 - identical under a single nucleon exchange,
 - adjacent to the doubly magic ⁵⁶Ni,
 - ▶ and located alongside the N = Z line.

- Each of these ideas are combined in the approved ⁵⁵Ni and ⁵⁵Co experiment at TRIUMF.
- ⁵⁵Ni and ⁵⁵Co are:
 - identical under a single nucleon exchange,
 - adjacent to the doubly magic ⁵⁶Ni,
 - ▶ and located alongside the N = Z line.
- ▶ Where production is achieved via fusion evaporation:

- Each of these ideas are combined in the approved ⁵⁵Ni and ⁵⁵Co experiment at TRIUMF.
- ⁵⁵Ni and ⁵⁵Co are:
 - identical under a single nucleon exchange,
 - adjacent to the doubly magic ⁵⁶Ni,
 - ▶ and located alongside the N = Z line.
- ▶ Where production is achieved via fusion evaporation:
 - ²⁰Na(⁴⁰Ca, αp)⁵⁵Ni

- Each of these ideas are combined in the approved ⁵⁵Ni and ⁵⁵Co experiment at TRIUMF.
- ▶ ⁵⁵Ni and ⁵⁵Co are:
 - identical under a single nucleon exchange,
 - adjacent to the doubly magic ⁵⁶Ni,
 - ▶ and located alongside the N = Z line.
- ▶ Where production is achieved via fusion evaporation:

•
20
Na $({}^{40}$ Ca, αp)⁵⁵Ni

• 20 Ne(40 Ca, αp) 55 Co

- Each of these ideas are combined in the approved ⁵⁵Ni and ⁵⁵Co experiment at TRIUMF.
- ⁵⁵Ni and ⁵⁵Co are:
 - identical under a single nucleon exchange,
 - adjacent to the doubly magic ⁵⁶Ni,
 - ▶ and located alongside the N = Z line.
- ▶ Where production is achieved via fusion evaporation:
 - ²⁰Na(⁴⁰Ca, αp)⁵⁵Ni
 - ²⁰Ne(⁴⁰Ca, αp)⁵⁵Co
 - \triangleright ²⁰Na is a radioactive beam and ²⁰Ne is a stable beam.

- Each of these ideas are combined in the approved ⁵⁵Ni and ⁵⁵Co experiment at TRIUMF.
- ⁵⁵Ni and ⁵⁵Co are:
 - identical under a single nucleon exchange,
 - adjacent to the doubly magic ⁵⁶Ni,
 - ▶ and located alongside the N = Z line.
- ▶ Where production is achieved via fusion evaporation:
 - ²⁰Na(⁴⁰Ca, αp)⁵⁵Ni
 - ²⁰Ne(⁴⁰Ca, αp)⁵⁵Co
 - \triangleright ²⁰Na is a radioactive beam and ²⁰Ne is a stable beam.
- DSAM techniques will be applied in tandem with TIGRESS, TIP and the CsI Ball.

 Identify the energy, spins, and parities of excited states in ⁵⁵Ni beyond those previously reported.

SF

- Identify the energy, spins, and parities of excited states in ⁵⁵Ni beyond those previously reported.
- ▶ Establish Mirror Energy Differences with comparison against ⁵⁵Co.

- Identify the energy, spins, and parities of excited states in ⁵⁵Ni beyond those previously reported.
- Establish Mirror Energy Differences with comparison against ⁵⁵Co.
- Provide reliable data for Shell Model calculations for f_{7/2} hole states near ⁵⁶Ni.

- Identify the energy, spins, and parities of excited states in ⁵⁵Ni beyond those previously reported.
- Establish Mirror Energy Differences with comparison against ⁵⁵Co.
- Provide reliable data for Shell Model calculations for f_{7/2} hole states near ⁵⁶Ni.
- Measurements of EM transition rates for the states in 55 Ni and 55 Co.

- Identify the energy, spins, and parities of excited states in ⁵⁵Ni beyond those previously reported.
- Establish Mirror Energy Differences with comparison against ⁵⁵Co.
- Provide reliable data for Shell Model calculations for f_{7/2} hole states near ⁵⁶Ni.
- Measurements of EM transition rates for the states in 55 Ni and 55 Co.
- This will require measuring:

- Identify the energy, spins, and parities of excited states in ⁵⁵Ni beyond those previously reported.
- ▶ Establish Mirror Energy Differences with comparison against ⁵⁵Co.
- Provide reliable data for Shell Model calculations for f_{7/2} hole states near ⁵⁶Ni.
- Measurements of EM transition rates for the states in 55 Ni and 55 Co.
- ► This will require measuring:
 - Energies of excited states.

- Identify the energy, spins, and parities of excited states in ⁵⁵Ni beyond those previously reported.
- ▶ Establish Mirror Energy Differences with comparison against ⁵⁵Co.
- Provide reliable data for Shell Model calculations for f_{7/2} hole states near ⁵⁶Ni.
- Measurements of EM transition rates for the states in 55 Ni and 55 Co.
- ► This will require measuring:
 - Energies of excited states.
 - Angular correlations and polarization of γ-rays.

- Identify the energy, spins, and parities of excited states in ⁵⁵Ni beyond those previously reported.
- ▶ Establish Mirror Energy Differences with comparison against ⁵⁵Co.
- Provide reliable data for Shell Model calculations for f_{7/2} hole states near ⁵⁶Ni.
- Measurements of EM transition rates for the states in 55 Ni and 55 Co.
- This will require measuring:
 - Energies of excited states.
 - Angular correlations and polarization of γ -rays.
 - Lifetimes via DSAM

► The required framework already exists for this experiment that will be used to infer observations from experimental data.

- The required framework already exists for this experiment that will be used to infer observations from experimental data.
- The beam type/energy, target type, desired reaction, TIGRESS, Csl Ball, TIP and DAQ processing time can all be factored in.

- The required framework already exists for this experiment that will be used to infer observations from experimental data.
- The beam type/energy, target type, desired reaction, TIGRESS, Csl Ball, TIP and DAQ processing time can all be factored in.
- Simulation parameters:

- The required framework already exists for this experiment that will be used to infer observations from experimental data.
- The beam type/energy, target type, desired reaction, TIGRESS, Csl Ball, TIP and DAQ processing time can all be factored in.
- Simulation parameters:
 - ▶ Projectile: ²⁰Na at 100 *MeV*

- The required framework already exists for this experiment that will be used to infer observations from experimental data.
- The beam type/energy, target type, desired reaction, TIGRESS, Csl Ball, TIP and DAQ processing time can all be factored in.
- Simulation parameters:
 - ▶ Projectile: ²⁰Na at 100 *MeV*
 - ▶ Target: 40 Ca with 1.91 mg/cm^2 (1.23 μm) thickness

- The required framework already exists for this experiment that will be used to infer observations from experimental data.
- The beam type/energy, target type, desired reaction, TIGRESS, Csl Ball, TIP and DAQ processing time can all be factored in.
- Simulation parameters:
 - ▶ Projectile: ²⁰Na at 100 *MeV*
 - ▶ Target: 40 Ca with 1.91 mg/cm^2 (1.23 μm) thickness
 - Backing: ¹⁹⁷Au with 28.76 mg/cm^2 (14.9 μm) thickness

- The required framework already exists for this experiment that will be used to infer observations from experimental data.
- ► The beam type/energy, target type, desired reaction, TIGRESS, CsI Ball, TIP and DAQ processing time can all be factored in.
- Simulation parameters:
 - ▶ Projectile: ²⁰Na at 100 *MeV*
 - ▶ Target: 40 Ca with 1.91 mg/cm^2 (1.23 μm) thickness
 - Backing: ¹⁹⁷Au with 28.76 mg/cm^2 (14.9 μm) thickness
 - ▶ Reaction products: α , p, and 2882 $keV \gamma$ -ray

- The required framework already exists for this experiment that will be used to infer observations from experimental data.
- ► The beam type/energy, target type, desired reaction, TIGRESS, CsI Ball, TIP and DAQ processing time can all be factored in.
- Simulation parameters:
 - ▶ Projectile: ²⁰Na at 100 *MeV*
 - ▶ Target: 40 Ca with 1.91 mg/cm^2 (1.23 μm) thickness
 - Backing: ¹⁹⁷Au with 28.76 mg/cm^2 (14.9 μm) thickness
 - ▶ Reaction products: α , p, and 2882 keV γ -ray
 - Lifetime varied: 10, 20, 50, 100, 200, 400, 600, 800, 1000 fs

- The required framework already exists for this experiment that will be used to infer observations from experimental data.
- ► The beam type/energy, target type, desired reaction, TIGRESS, CsI Ball, TIP and DAQ processing time can all be factored in.

Simulation parameters:

- ▶ Projectile: ²⁰Na at 100 *MeV*
- ▶ Target: 40 Ca with 1.91 mg/cm^2 (1.23 μm) thickness
- Backing: ¹⁹⁷Au with 28.76 mg/cm^2 (14.9 μm) thickness
- ▶ Reaction products: α , p, and 2882 $keV \gamma$ -ray
- ▶ Lifetime varied: 10, 20, 50, 100, 200, 400, 600, 800, 1000 *fs*
- ▶ Q Values: 11.788 *MeV* for formation, and net -3.968 *MeV* for evaporation

- The required framework already exists for this experiment that will be used to infer observations from experimental data.
- ► The beam type/energy, target type, desired reaction, TIGRESS, CsI Ball, TIP and DAQ processing time can all be factored in.

Simulation parameters:

- ▶ Projectile: ²⁰Na at 100 *MeV*
- ▶ Target: 40 Ca with 1.91 mg/cm^2 (1.23 μm) thickness
- Backing: ¹⁹⁷Au with 28.76 mg/cm^2 (14.9 μm) thickness
- ▶ Reaction products: α , p, and 2882 $keV \gamma$ -ray
- ▶ Lifetime varied: 10, 20, 50, 100, 200, 400, 600, 800, 1000 fs
- ▶ Q Values: 11.788 *MeV* for formation, and net -3.968 *MeV* for evaporation
- ▶ Simulation ran for 10⁷ reactions

SFU

Better for stable beams with good statistics.

- Better for stable beams with good statistics.
- Assumes that for k data bins, with random variable x_i, and parameter vector α, that the data is fit by the product of Gaussians:

$$\mathcal{L}(\alpha; x_i) = \prod_{i=1}^k f(\alpha; x_i)$$
(1)

- ▶ Better for stable beams with good statistics.
- Assumes that for k data bins, with random variable x_i, and parameter vector α, that the data is fit by the product of Gaussians:

$$\mathcal{L}(\alpha; x_i) = \prod_{i=1}^k f(\alpha; x_i)$$
(1)

Which has a maximum when the χ² is minimized, where y_i is a histogram of the mean values predicted, n_i is the observed data, and σ_i is the estimated variance for y_i:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - y_{i}(\alpha, x_{i}))^{2}}{\sigma_{i}^{2}}$$
(2)

- ▶ Better for stable beams with good statistics.
- Assumes that for k data bins, with random variable x_i, and parameter vector α, that the data is fit by the product of Gaussians:

$$\mathcal{L}(\alpha; x_i) = \prod_{i=1}^k f(\alpha; x_i)$$
(1)

Which has a maximum when the χ² is minimized, where y_i is a histogram of the mean values predicted, n_i is the observed data, and σ_i is the estimated variance for y_i:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - y_{i}(\alpha, x_{i}))^{2}}{\sigma_{i}^{2}}$$
(2)

 Estimates are constructed by comparing GEANT4-simulated data to experimental data. Better for radioactive beams with low statistics.

SFU

- Better for radioactive beams with low statistics.
- Use an alternate likelihood function where n_i is the data and λ_i is the expected value for channel i:

$$\mathcal{L}(\lambda_i; n_i) = \prod_{i=1}^k \frac{\lambda_i^{n_i} exp(-\lambda_i)}{n_i!}$$
(3)

- Better for radioactive beams with low statistics.
- Use an alternate likelihood function where n_i is the data and λ_i is the expected value for channel i:

$$\mathcal{L}(\lambda_i; n_i) = \prod_{i=1}^k \frac{\lambda_i^{n_i} exp(-\lambda_i)}{n_i!}$$
(3)

Where the bin-by-bin derivative is given by:

$$\frac{\partial \ln \mathcal{L}(\lambda_i; n_i)}{\partial \lambda_i} = n_i \frac{1}{\lambda_i} - 1 = 0$$
(4)

- Better for radioactive beams with low statistics.
- Use an alternate likelihood function where n_i is the data and λ_i is the expected value for channel i:

$$\mathcal{L}(\lambda_i; n_i) = \prod_{i=1}^k \frac{\lambda_i^{n_i} exp(-\lambda_i)}{n_i!}$$
(3)

Where the bin-by-bin derivative is given by:

$$\frac{\partial \ln \mathcal{L}(\lambda_i; n_i)}{\partial \lambda_i} = n_i \frac{1}{\lambda_i} - 1 = 0$$
(4)

• Likelihood function maximized by $\hat{\lambda}_i = n_i$ for $\lambda_i, n_i > 0$

Centroid Change with Ring Number

$$E_d = E_o rac{\sqrt{1-eta^2}}{1-eta\cos heta}$$

T. Schilbach (SFU)

WNPPC 2022

(5)

SFU

▶ The centroid can be found via:

SFU

▶ The centroid can be found via:

$$C_x = \frac{\sum_i x_i n_i}{\sum_i n_i}$$

(6)

For position x_i and counts n_i .

SFU

The centroid can be found via:

$$C_x = \frac{\sum_i x_i n_i}{\sum_i n_i}$$

(6)

- For position x_i and counts n_i .
- ▶ Where the variance is provided by:

SFU

(7)

The centroid can be found via:

$$C_x = \frac{\sum_i x_i n_i}{\sum_i n_i} \tag{6}$$

For position x_i and counts n_i .

▶ Where the variance is provided by:

$$\sigma^2 = \frac{\sum_i (n_i(x_i - C_x))^2}{\sum_i n_i - 1}$$

▶ For $N = \sum_{i} n_i$ total samples.

SFU

The centroid can be found via:

$$C_x = \frac{\sum_i x_i n_i}{\sum_i n_i} \tag{6}$$

For position x_i and counts n_i .

Where the variance is provided by:

$$\sigma^{2} = \frac{\sum_{i} (n_{i}(x_{i} - C_{x}))^{2}}{\sum_{i} n_{i} - 1}$$
(7)

▶ For $N = \sum_{i} n_i$ total samples.

▶ Finally, the error for the centroid is given by:

SFU

The centroid can be found via:

$$C_{\rm x} = \frac{\sum_i x_i n_i}{\sum_i n_i} \tag{6}$$

For position x_i and counts n_i .

Where the variance is provided by:

$$\sigma^{2} = \frac{\sum_{i} (n_{i}(x_{i} - C_{x}))^{2}}{\sum_{i} n_{i} - 1}$$
(7)

• For $N = \sum_{i} n_i$ total samples.

▶ Finally, the error for the centroid is given by:

$$C_{err} = \frac{\sigma}{\sqrt{N}}$$

T. Schilbach (SFU)

(8)

Centroid Comparisons

SFU

Thank you to:

- ▶ K. Starosta¹
- ▶ M. Martin², A. Redey³, A. Woinoski², F. Wu¹
- ▶ G. Hackman⁴, K. van Wieren⁵, J. Williams⁴

¹Department of Chemistry, Simon Fraser University

²Department of Physics, Simon Fraser University

³School of Engineering Science, Simon Fraser University ⁴TRIUMF

⁵Science Technical Centre, Simon Fraser University

T. Schilbach (SFU)

WNPPC 2022