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QUANTUM FIELD THEORY

⋄ Feynman rules

vertex ig
external leg p

propagator i
(k+p)2−m2

2+iζ

i
k2−m2

1+iζ

p

Figure 1: The one-loop self-energy Feynman diagram with scalar fields.

∼ g2
∫

d4k
(2π)4

1
k2 − m1
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(k + p)2 − m2
2 + iζ
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THERMAL FIELD THEORY

The general density matrix 1

ρ(β) = e−βH,

The Partition function

Z(β) = Tr ρ(β) = Tr e−βH

The expectation value of an observable A

⟨A⟩β = Z−1(β) Tr (ρ(β) A) =
Tr ( e−βHA )

Tr e−βH

The vacuum expectation value

lim
T →0

Tr ( ρA ) = ⟨0|A |0⟩

1F. Gelis, Quantum Field Theory: From Basics to Modern Topics. Cambridge
University Press, 2019.
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MATSUBARA FORMALISM

⋄ For free bosonic scalar fields, 2

G0(ωn,p) =
1

ω2
n + p2 + m2

with the Matsubara frequency ωn = 2nπT being T dependent.
Here we have T = 1

kBβ
with kB = 1.

⋄ The temporal k0 integral is therefore discretized,∫
d4k
(2π)4 → 1

β

+∞∑
n=−∞

∫
d3k
(2π)3 .

2F. Gelis, Quantum Field Theory: From Basics to Modern Topics. Cambridge
University Press, 2019.

3



Introduction Methodology Numerical Results Conclusions & Future Steps

THERMAL FIELD THEORY

p

k + p

m2

k

m1

p

Figure 2: The one-loop self-energy Feynman diagram with scalar fields.

ΠT (p, p0) =
1

2β

∞∑
n=−∞

∫
d3k
(2π)3

1
4n2π2

β2 + k2 + m1
2

× 1
( 2nπ

β + p0)2 + (k + p)2 + m2
2
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OBJECT

The object we are looking for is

Πs = ΠT −Π0.

And the biggest difficulties we are facing from Πs is

⋄ the ultra-violet divergence in d = 4 spacetime (1 temporal
dimension and 3 spatial dimensions) for both ΠT and Π0;

Π0(p, p0) =
1
2

∫
d4k
(2π)4

1
k2 + m1

2 × 1
(k + p)2 + m2

2

⋄ the application to the numerical calculation tool.
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THE CUT-OFF METHOD

ΠT ≈
∑

n
1

32|n|π2 , |n| ≫ 1
⇓

An upper limit nmax provides a suitable regulation method to regulate
both divergent ΠT and Π0.

⇓
Πs hopefully will be convergent as nmax → ∞ and k0,max = 2πnmax

β → ∞.
⇓

the cut-off method
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THE ‘REVERSE’ WICK ROTATION

⋄ pySecDec: a program designed for numerical calculation of
dimensionally regulated loop integrals. 3

⋄

ΠT (p, pE
0 ) =

1
2β

∞∑
n=−∞

∫
d3k
(2π)3

1
( 2nπ

β )2 + k2 + m1
2
× 1

(( 2nπ
β )2 + pE

0 )
2 + (k + p)2 + m2

2︸ ︷︷ ︸
This is the part we can use pySecDec to numerically evaluate.

3“pysecdec: A toolbox for the numerical evaluation of multi-scale integrals,” arXiv:1703.09692.
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THE ‘REVERSE’ WICK ROTATION

∫
dDk
(2π)D

1
k2 + Λ1

2︸ ︷︷ ︸×
1

(k + p)2 + Λ2
2︸ ︷︷ ︸

⋄ ΠT expression is in Euclidean space, while pySecDec works in
Minkowski space.

⋄ pySecDec will calculate momentum in spacetime dimension
while we only need to solve integral for spatial dimensions.
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THE ‘REVERSE’ WICK ROTATION

Define momentum km
1

km
1 = ik1, dkm

1 = i dk1, (km
1 )

2 = (ik1)
2 = −k2

1

Define Minkowski spacetime momentum km = (km
1 , k2, k3, ...kD)

km · km = −k2 (1)

Now we have an applicable form of ΠT for pySecDec calculation

ΠT (p, pE
0 ) = −i

1
2β

∞∑
n=−∞

∫
d3km

(2π)3

1
(km)2 − Λ2

1
× 1

(km + pm)2 − Λ2
2
,

where p = (p1, p2, p3), pm
1 = ip1, km

1 = ik1, Λ2
1 = m1

2 + ω2
n + iζ and

Λ2
2 = m2

2 + (pE
0 + ωn)

2 + iζ.
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THE SUBTRACTION Πs = ΠT − Π0

Πs = ΠT −Π0

=
1

2β

∞∑
n=−∞

IT (ωn)−
1
2

∫
dkE

0

2π
I0(kE

0 )

≈ 1
2

(
nmax∑

n=−nmax

IT (ωn)

β
−

nmax−1∑
n=−nmax

∫ 2π(n+1)/β

2πn/β

dkE
0

2π
I0(kE

0 )

)
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THE SUBTRACTION Πs = ΠT − Π0

Zero Temperature

Finite Temperature (β = 0.3)

Finite Tempearture Correction(Finite-Zero)

50 100 150 200 250 300
max n

0.02

0.04

0.06

0.08

Π

Figure 3: The numerical calculation results from pySecDec of zero-temperature
correlation function Π0 (blue), finite-temperature correlation function ΠT (yellow) and
finite-temperature correction Πs (green). The parameter values are
m1 = 1.1,m2 = 2, pE

0 = 2π
β
, β = 0.3, p2 = 1 and maximum |n| up to 300.
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CONVERGENCE REGARDING DIFFERENT β VALUES

β = 0.1

β = 0.3

β = 0.5

β = 1

86 88 90 92 94 96 98 100
n

5.×10-6

0.000010

0.000015

0.000020

0.000025

0.000030
percantage differnce of nth and (n+1)th terms

Figure 4: The percentage difference of every two adjacent terms in the summation of
Πs. The β values are shown in the legend and maximum |n| up to 100.
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RELATIONSHIP WITH RESPECT TO EXTERNAL MOMENTA (d = 4)

Figure 5: The effects of the external momentum pE
0 and |p| on Πs of the

one-loop self-energy topology
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RELATIONSHIP WITH RESPECT TO TEMPERATURE T (d = 4)
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Figure 6: The plot of Πs with respect to β (left) and 1/β (right) respectively
for d = 4 spacetime. The slope in the right plot is approximately 0.00302586.
The intercept of the right plot is approximately 0.0314978 (with parameters
m1 = 1.1, m2 = 1.2, p = (7, 8, 9, 6), |n| = A = 100).
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RELATIONSHIP WITH RESPECT TO TEMPERATURE T (d = 4)

0.2 0.4 0.6 0.8
1/β

0.2
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0.8

Πs

Figure 7: The plot shows the Πs behavior at small temperature. The
finite-temperature correction Πs goes to zero as temperature goes to zero.
The parameters used are the same as in Fig. 6.
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OTHER TOPOLOGIES
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Figure 8: On the RHS is the log-log plot for the Πs vs T relation. The slope
on the right plot is approximately 1.99946.
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CONCLUSIONS

⋄ We developed a technique called ‘reverse’ Wick rotation so that
we can apply ΠT to pySecDec for numerical evaluation;

⋄ The cut-off method was chosen to regularize the divergence in
both ΠT and Π0;

⋄ Finally we successfully calculated Πs for one-loop self-energy
topology under finite temperature in d = 4 spacetime.

17
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FUTURE DIRECTIONS

⋄ More complicated topologies can be numerically calculated;

⋄ Alternative methodology is under development to manage the
divergences from analytical approach to compare with the cut-off
method.

18
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Thank you!
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DIMENSION CANCELLATION

Π0(p, p0) =
λ2

2

∫
d4k
(2π)4

1/p2(
k2

p2 +
m1

2

p2

) × 1/p2(
(k+p)2

p2 + m22

p2

)
=

λ2

2(2π)4

∫
d4
(

k
p

)
1(

k
p

)2
+ m1

2

p2

× 1(
k
p + 1

)2
+ m22

p2

Since we are using the particle physics convention of ℏ = c = 1, both
particle masses and momenta have the dimensions of energy. All the
expressions in brackets are dimensionless. So technically, what only
matters for numerical benchmarking are the ratios m1

2

p2 and m2
2

p2 .



PYSECDEC BENCHMARKING FOR ZERO-TEMPERATURE LOOP

INTEGRATIONS

⋄ pySecDec: a program designed for numerical calculation of
dimensionally regulated loop integrals.

⋄ One-loop self-energy topology integral (TBI).

TBI
[
d, p2, {{ν1,m1}, {ν2,m2}}

]
=

1

π
d
2

∫
ddk

[k2 − m1
2]ν1 [(k − q)2 − m2

2]ν2

TBI [ 4 + 2ϵ, q2, {ν1, 0},{ν2, 0} ] =
i

(4π)2

[
− q2

4π

]ϵ
(q2)2−ν1−ν2

Γ [2 − ν1 + ϵ] Γ [2 − ν2 + ϵ] Γ [ν1 + ν2 − 2 − ϵ]

Γ [ν1] Γ [ν2] Γ [4 − ν1 − ν2 + 2ϵ]



TBI MASSLESS INTEGRAL (m1 = m2 = 0 GeV, ν1 = ν2 = 1)
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pySecDec numerical calculation result

Analytical result



TBI MASSIVE INTEGRAL (m1 = m2 = 1.27 GeV, ν1 = ν2 = 1)
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pySecDec numerical calculation result
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TBI MASSIVE INTEGRAL (m1 = 1.27 GeV, m2 = 0, ν1 = ν2 = 1)
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CUTTING RULES

• Cutting Rules(Cutkosky rules 4): generally used to find the
imaginary part of a Feynman diagram.

m

mm

m

p1

p2

p3

p4

Figure 9: Four-point one-loop function topology with same internal masses

4M. E. Peskin, An introduction to quantum field theory. CRC press, 2018.



CUTTING RULES: PYSECDEC DATA FOR FOUR-POINT FUNCTION

WITH m = mb = 4.18 GeV

Figure 10: Above diagrams show the ϵ0 coefficient for the four-point
one-loop Feynman integral with same masses (m = mb = 4.18 GeV) along
with an expanded diagram on the right hand side. The imaginary part
remains zero until q2 ⪆ 26.21 GeV2.



CUTTING RULES: THRESHOLD ANALYSIS

2 Im


p1

p2 p3

p4
 =

∫
dΠ

∣∣∣∣∣∣∣∣∣∣∣∣∣ pj

pi

q1

q2

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

• symmetric kinematics, and with p4 = p1 + p2 + p3,

p2
1 = p2

2 = p2
3 = q2 = − 3 pi · pj

• As all the internal lines have the same mass m,

q2 >
3
2

m2 .

3
2

m2
b =

3
2
× (4.18 GeV)2 ≈ 26.209 GeV2.



LARGE n BEHAVIOR

ΠT =
1

2β

∑
n

∫
d3k
(2π)3

1
( 4n2π2

β2 ) + k2 + m1
2
× 1

( 2nπ
β + pE

0 )
2 + (k + p)2 + m2

2

≈ 1
2β

∑
n

∫
d3k
(2π)3

1
( 2nπ

β )2 + k2 × 1
( 2nπ

β )2 + k2 , for |n| ≫ 1

=
1

2β

∑
n

∫
d3k
(2π)3

1(
m′2 + k2

)2

where m′ = 2nπ
β .



LARGE n BEHAVIOR

Φ(m, d,B) =
∫

ddk
(2π)d

1

(k2 + m2)
B =

1

(4π)
d
2

Γ
(
B − d

2

)
Γ(B)

1

(m2)
B− d

2

5

ΠT ≈ 1
2β

∑
n

1
(4π)

3
2 +ϵ

Γ
( 1

2 + ϵ
)

1︸ ︷︷ ︸
expand ϵ to O(ϵ)

1(
2nπ
β

)2(1+2ϵ)

≈ 1
2β

∑
n

√
π

(4π)
3
2

β

2π (n2)
1
2 +ϵ

=
∑

n

1
32π2

1
|n|1+2ϵ .

5M. Laine and A. Vuorinen, Basics of Thermal Field Theory. Springer International
Publishing, 2016.



LARGE n BEHAVIOR

ΠT ≈
∑

n

an, an ≈ 1
32|n|π2 , |n| ≫ 1.

-1000 -500 500 1000
n

-0.00001

0.00001

0.00002

Numerical Results

Finite-temperature Correlator Summation Terms an

an-
1

32 n π2

Figure 6:
The pySecDec-
computed ΠT terms
an ≈ 1

32|n|π2 are
analyzed by calcu-
lating the difference
ΠT − an as a
function of n. The
finite-temperature
terms were cal-
culated with the
parameter values of
m1 = m2 = 1.1, pE

0 =
2π
β
, β = 0.3, p2 = 5



PROOF OF CONVERGENCE

Define
Cn = An − An+1,

where An represents individual terms from the summation in Πs.

An =
IT (ωn)

β
−
∫ 2π(n+1)/β

2πn/β

dkE
0

2π
I0(kE

0 ).



PROOF OF CONVERGENCE
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ln(n)
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Figure 11: The plot between ln(Cn) and ln(n) shows a linear relation with a
slope −γ ≈ −3.57 corresponding to Cn ≈ a

nγ . The data in the figure was
generated with the same parameters as in Fig. 3.



PROOF OF CONVERGENCE

Cn ≈ a
nγ

⇒ ln(Cn) ≈ −γ ln(n) + ln(a),

where ln(a) is defined as the intercept in Fig. 11. Thus we find

Cn = An − An+1 ≈ a
nγ

,

with γ ≈ 3.57 > 1.



METHODOLOGY BENCHMARK FOR d = 3 SPACETIME

Subtraction Methodology

Direct Subtraction from pySecDec Integrations
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3-Dimensional Finite-Temperature Correction Numerical Results



RELATIONSHIP WITH RESPECT TO EXTERNAL MOMENTA (d = 3)

Figure 12: The effects of the external momentum on the d = 3
finite-temperature correction Πs (Eq. (1)) of the one-loop self-energy topology
(with same parameter values as in Fig. ??).



RELATIONSHIP WITH RESPECT TO TEMPERATURE T (d = 3)
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Figure 13: The plot of the finite-temperature correction Πs as a function of β
(left) and 1/β (right) at d = 3 spacetime. The slope on the right plot is
approximately 0.00130617. The parameters used in the calculation are
m1 = 1.1,m2 = 1.2, pµ = (7, 8, 9, 0).



CONVERGENCE REGARDING DIFFERENT β VALUES
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Figure 14: The numerical calculation results from pySecDec of finite-temperature
correction Πs. The β values are shown in the legend and maximum |n| up to 100.



THE CONVERGENCE OF Πs

Define An =
IT (ωn)

β
−
∫ 2π(n+1)/β

2πn/β

dkE
0

2π
I0(kE

0 ). Confirm An ≈ a
nγ

.
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Figure 15: The plot between ln(An) and ln(n) shows a linear relation with a slope
−γ ≈ −2.80 corresponding to An ≈ a

nγ .



MATSUBARA FORMALISM

⋄ The density operator

e−βH = e−βH0 U(ti − iβ, ti) = e−βH0 T exp

[
i
∫ ti−iβ

ti

d4xLI(ϕin(x))

]

where U is the time evolution operator.

⋄ The contour is then C = [ti,+∞] ∪ [+∞, ti] ∪ [ti, ti − iβ].

ti

ti - iβ

Re(t)

Im(t)



MATSUBARA FORMALISM

⋄ The quantities that describe the thermodynamics of a system in
thermal equilibrium are time independent.

ti → 0

- iβ

Re(t)

Im(t)

Figure 16: Simplified contour C of thermal time (taking initial thermal time
−→ 0).
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