Numerical Methods for Finite Temperature Effects in Quantum Field Theory

WNPPC 2022

Siyuan Li [†] February 17, 2022

[†]Co-supervisors: Tom Steele & Derek Harnett Department of Physics and Engineering Physics University of Saskatchewan

Introduction

Introduction	Methodology	Numerical Results	Conclusions & Future Steps
00000			

QUANTUM FIELD THEORY

◊ Feynman rules

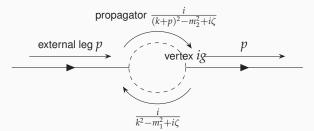


Figure 1: The one-loop self-energy Feynman diagram with scalar fields.

$$\sim g^2 \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_1^2 + i\zeta} \times \frac{1}{(k+p)^2 - m_2^2 + i\zeta}$$

1

Introduction	Methodology	Numerical Results	Conclusions & Future Steps
00000			

THERMAL FIELD THEORY

The general density matrix ¹

$$\rho(\beta) = e^{-\beta \mathcal{H}},$$

The Partition function

$$Z(\beta) = \operatorname{Tr} \rho(\beta) = \operatorname{Tr} e^{-\beta \mathcal{H}}$$

The expectation value of an observable A

$$\langle A \rangle_{\beta} = Z^{-1}(\beta) \operatorname{Tr} \left(\rho(\beta) A \right) = \frac{\operatorname{Tr} \left(e^{-\beta \mathcal{H}} A \right)}{\operatorname{Tr} e^{-\beta \mathcal{H}}}$$

The vacuum expectation value

$$\lim_{\mathcal{T}\to 0} \operatorname{Tr}\left(\rho A\right) = \langle 0|A|0\rangle$$

¹F. Gelis, Quantum Field Theory: From Basics to Modern Topics. Cambridge University Press, 2019.

MATSUBARA FORMALISM

◊ For free bosonic scalar fields, ²

$$\mathcal{G}^0(\omega_n, oldsymbol{p}) = rac{1}{\omega_n^2 + oldsymbol{p}^2 + m^2}$$

with the Matsubara frequency $\omega_n = 2n\pi T$ being T dependent. Here we have $T = \frac{1}{k_B\beta}$ with $k_B = 1$.

 \diamond The temporal k_0 integral is therefore discretized,

$$\int \frac{d^4k}{(2\pi)^4} \to \frac{1}{\beta} \sum_{n=-\infty}^{+\infty} \int \frac{d^3k}{(2\pi)^3}.$$

²F. Gelis, Quantum Field Theory: From Basics to Modern Topics. Cambridge University Press, 2019.

THERMAL FIELD THEORY

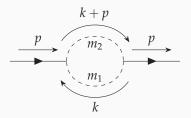


Figure 2: The one-loop self-energy Feynman diagram with scalar fields.

$$\Pi_{\mathcal{T}}(\boldsymbol{p}, p_0) = \frac{1}{2\beta} \sum_{n=-\infty}^{\infty} \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} \frac{1}{\frac{4n^2 \pi^2}{\beta^2} + \boldsymbol{k}^2 + m_1^2} \\ \times \frac{1}{(\frac{2n\pi}{\beta} + p_0)^2 + (\boldsymbol{k} + \boldsymbol{p})^2 + m_2^2}$$

Methodology

Introduction	Methodology O●OOOOOOO	Numerical Results	Conclusions & Future Steps

Овјест

The object we are looking for is

$$\Pi_s = \Pi_{\mathcal{T}} - \Pi_0.$$

And the biggest difficulties we are facing from Π_s is

♦ the ultra-violet **divergence** in d = 4 spacetime (1 temporal dimension and 3 spatial dimensions) for both Π_T and Π_0 ;

$$\Pi_0(\boldsymbol{p}, p^0) = \frac{1}{2} \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + m_1^2} \times \frac{1}{(k+p)^2 + m_2^2}$$

the application to the numerical calculation tool.

Introduction	Methodology ○O●OOOOOO	Numerical Results	Conclusions & Future Steps

THE CUT-OFF METHOD

$$\begin{aligned} \Pi_{\mathcal{T}} &\approx \sum_{n} \frac{1}{32|n|\pi^{2}}, \ |n| \gg 1 \\ & \downarrow \end{aligned}$$
An upper limit n_{\max} provides a suitable regulation method to regulate both divergent $\Pi_{\mathcal{T}}$ and Π_{0} .
 $& \downarrow \\ \Pi_{s}$ hopefully will be convergent as $n_{max} \to \infty$ and $k_{0,max} = \frac{2\pi n_{max}}{\beta} \to \infty$.
 $& \downarrow \\ & \downarrow \\ & \text{the cut-off method} \end{aligned}$

THE 'REVERSE' WICK ROTATION

 pySecDec: a program designed for numerical calculation of dimensionally regulated loop integrals.³

 \diamond

$$\Pi_{\mathcal{T}}(\boldsymbol{p}, p_0^E) = \frac{1}{2\beta}$$

$$\sum_{n=-\infty}^{\infty} \int \frac{d^3\boldsymbol{k}}{(2\pi)^3} \frac{1}{(\frac{2n\pi}{\beta})^2 + \boldsymbol{k}^2 + m_1^2} \times \frac{1}{((\frac{2n\pi}{\beta})^2 + p_0^E)^2 + (\boldsymbol{k} + \boldsymbol{p})^2 + m_2^2}$$

This is the part we can use pySecDec to numerically evaluate.

³"pysecdec: A toolbox for the numerical evaluation of multi-scale integrals," arXiv:1703.09692.

 Introduction
 Methodology
 Numerical Results
 Conclusions & Future Steps

 00000
 00000
 00000
 0000

THE 'REVERSE' WICK ROTATION

$$\int \frac{d^D \mathbf{k}}{(2\pi)^D} \underbrace{\frac{1}{\mathbf{k}^2 + \Lambda_1^2}}_{\mathbf{k}^2 + \Lambda_1^2} \times \underbrace{\frac{1}{(\mathbf{k} + \mathbf{p})^2 + \Lambda_2^2}}_{\mathbf{k}^2}$$

- $\diamond~\Pi_{\mathcal{T}}$ expression is in Euclidean space, while pySecDec works in Minkowski space.
- pySecDec will calculate momentum in spacetime dimension while we only need to solve integral for spatial dimensions.

Introduction	Methodology	Numerical Results	Conclusions & Future Steps
00000	00000000	00000	0000

THE 'REVERSE' WICK ROTATION

Define momentum k_1^m

$$k_1^m = ik_1, \ dk_1^m = i \, dk_1, \ (k_1^m)^2 = (ik_1)^2 = -k_1^2$$

Define Minkowski spacetime momentum $k^m = (k_1^m, k_2, k_3, ... k_D)$

$$k^m \cdot k^m = -\mathbf{k}^2 \tag{1}$$

Now we have an applicable form of $\Pi_{\mathcal{T}}$ for pySecDec calculation

$$\Pi_{\mathcal{T}}(\boldsymbol{p}, p_0^E) = -i \, \frac{1}{2\beta} \sum_{n=-\infty}^{\infty} \int \frac{d^3 k^m}{(2\pi)^3} \frac{1}{(k^m)^2 - \Lambda_1^2} \times \frac{1}{(k^m + p^m)^2 - \Lambda_2^2},$$

where $p = (p_1, p_2, p_3), p_1^m = ip_1, k_1^m = ik_1, \Lambda_1^2 = m_1^2 + \omega_n^2 + i\zeta$ and $\Lambda_2^2 = m_2^2 + (p_0^E + \omega_n)^2 + i\zeta$.

Introduction 00000 Methodology 000000000

Numerical Results

Conclusions & Future Steps

The Subtraction $\Pi_s = \Pi_{\mathcal{T}} - \Pi_0$

$$\begin{split} \Pi_{s} &= \Pi_{\mathcal{T}} - \Pi_{0} \\ &= \frac{1}{2\beta} \sum_{n=-\infty}^{\infty} I_{\mathcal{T}}(\omega_{n}) - \frac{1}{2} \int \frac{dk_{0}^{E}}{2\pi} I_{0}(k_{0}^{E}) \\ &\approx \frac{1}{2} \left(\sum_{n=-n_{max}}^{n_{max}} \frac{I_{\mathcal{T}}(\omega_{n})}{\beta} - \sum_{n=-n_{max}}^{n_{max}-1} \int_{2\pi n/\beta}^{2\pi (n+1)/\beta} \frac{dk_{0}^{E}}{2\pi} I_{0}(k_{0}^{E}) \right) \end{split}$$

Introduction	Methodology	Numerical Results	Conclusions & Future Steps
00000	000000000	00000	0000

THE SUBTRACTION $\Pi_s = \Pi_{\mathcal{T}} - \Pi_0$

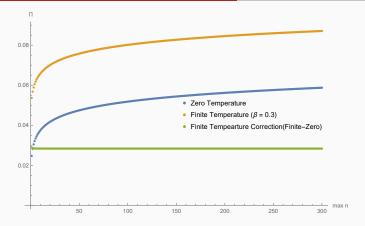
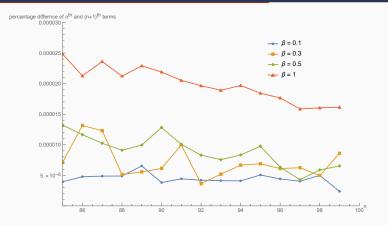
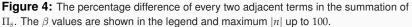


Figure 3: The numerical calculation results from pySecDec of zero-temperature correlation function Π_0 (blue), finite-temperature correlation function $\Pi_{\mathcal{T}}$ (yellow) and finite-temperature correction Π_s (green). The parameter values are $m_1 = 1.1, m_2 = 2, p_0^E = \frac{2\pi}{\beta}, \beta = 0.3, p^2 = 1$ and maximum |n| up to 300.

Introduction	Methodology	Numerical Results	Conclusions & Future Steps
00000	00000000	00000	0000

CONVERGENCE REGARDING DIFFERENT β VALUES





Numerical Results

RELATIONSHIP WITH RESPECT TO EXTERNAL MOMENTA (d = 4)

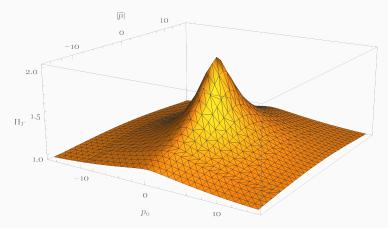


Figure 5: The effects of the external momentum p_0^E and $|\mathbf{p}|$ on Π_s of the one-loop self-energy topology

Introduction	Methodology	Numerical Results 00●00	Conclusions & Future Steps

Relationship with Respect to Temperature \mathcal{T} (d=4)

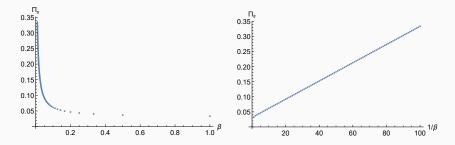


Figure 6: The plot of Π_s with respect to β (left) and $1/\beta$ (right) respectively for d = 4 spacetime. The slope in the right plot is approximately 0.00302586. The intercept of the right plot is approximately 0.0314978 (with parameters $m_1 = 1.1, m_2 = 1.2, p = (7, 8, 9, 6), |n| = A = 100$).

Relationship with Respect to Temperature \mathcal{T} (d=4)

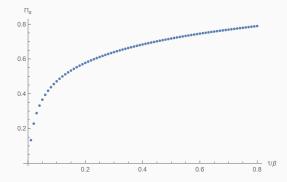


Figure 7: The plot shows the Π_s behavior at small temperature. The finite-temperature correction Π_s goes to zero as temperature goes to zero. The parameters used are the same as in Fig. 6.

Introduction	Methodology 00000000	Numerical Results ○○○○●	Conclusions & Future Steps

OTHER TOPOLOGIES

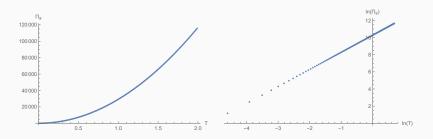


Figure 8: On the RHS is the log-log plot for the Π_s vs \mathcal{T} relation. The slope on the right plot is approximately 1.99946.

Conclusions & Future Steps

CONCLUSIONS

- $\diamond~$ We developed a technique called 'reverse' Wick rotation so that we can apply $\Pi_{\mathcal{T}}$ to pySecDec for numerical evaluation;
- $\diamond~$ The cut-off method was chosen to regularize the divergence in both $\Pi_{\mathcal{T}}$ and $\Pi_0;$
- ♦ Finally we successfully calculated Π_s for one-loop self-energy topology under finite temperature in d = 4 spacetime.

Introduction	Methodolog		onclusions & Future Steps O●O
_	_		

FUTURE DIRECTIONS

More complicated topologies can be numerically calculated;

 Alternative methodology is under development to manage the divergences from analytical approach to compare with the cut-off method.

Introduction	Methodology 00000000	Numerical Results	Conclusions & Future Steps

Thank you!

Back-up Slides

$$\begin{split} \Pi_0(\boldsymbol{p}, p^0) &= \frac{\lambda^2}{2} \int \frac{d^4k}{(2\pi)^4} \frac{1/p^2}{\left(\frac{k^2}{p^2} + \frac{m_1^2}{p^2}\right)} \times \frac{1/p^2}{\left(\frac{(k+p)^2}{p^2} + \frac{m_2^2}{p^2}\right)} \\ &= \frac{\lambda^2}{2(2\pi)^4} \int d^4 \left(\frac{k}{p}\right) \frac{1}{\left(\frac{k}{p}\right)^2 + \frac{m_1^2}{p^2}} \times \frac{1}{\left(\frac{k}{p} + 1\right)^2 + \frac{m_2^2}{p^2}} \end{split}$$

Since we are using the particle physics convention of $\hbar = c = 1$, both particle masses and momenta have the dimensions of energy. All the expressions in brackets are dimensionless. So technically, what only matters for numerical benchmarking are the ratios $\frac{m_1^2}{p^2}$ and $\frac{m_2^2}{p^2}$.

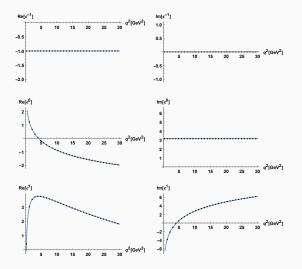
PYSECDEC BENCHMARKING FOR ZERO-TEMPERATURE LOOP INTEGRATIONS

- pySecDec: a program designed for numerical calculation of dimensionally regulated loop integrals.
- One-loop self-energy topology integral (TBI).

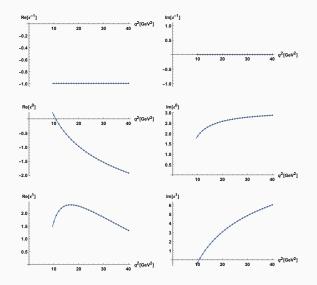
$$\mathsf{TBI}\left[d, p^2, \{\{\nu_1, m_1\}, \{\nu_2, m_2\}\}\right] = \frac{1}{\pi^{\frac{d}{2}}} \int \frac{d^d k}{[k^2 - m_1^2]^{\nu_1}[(k-q)^2 - m_2^2]^{\nu_2}}$$

$$\mathsf{TBI} [4 + 2\epsilon, q^2, \{\nu_1, 0\}, \{\nu_2, 0\}] = \frac{i}{(4\pi)^2} \left[-\frac{q^2}{4\pi} \right]^{\epsilon} (q^2)^{2-\nu_1-\nu_2} \\ \frac{\Gamma [2 - \nu_1 + \epsilon] \Gamma [2 - \nu_2 + \epsilon] \Gamma [\nu_1 + \nu_2 - 2 - \epsilon]}{\Gamma [\nu_1] \Gamma [\nu_2] \Gamma [4 - \nu_1 - \nu_2 + 2\epsilon]}$$

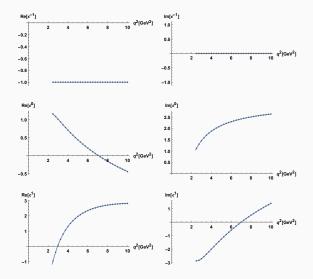
TBI MASSLESS INTEGRAL ($m_1 = m_2 = 0 \text{ GeV}, \nu_1 = \nu_2 = 1$ **)**



TBI MASSIVE INTEGRAL ($m_1 = m_2 = 1.27 \text{ GeV}, \nu_1 = \nu_2 = 1$ **)**



TBI MASSIVE INTEGRAL $(m_1 = 1.27 \text{ GeV}, m_2 = 0, \nu_1 = \nu_2 = 1)$



CUTTING RULES

 Cutting Rules(Cutkosky rules⁴): generally used to find the imaginary part of a Feynman diagram.

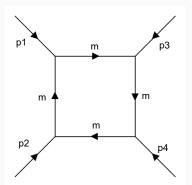


Figure 9: Four-point one-loop function topology with same internal masses

⁴M. E. Peskin, An introduction to quantum field theory. CRC press, 2018.

Cutting Rules: PySecDec Data for four-point function with $m = m_b = 4.18 \ GeV$

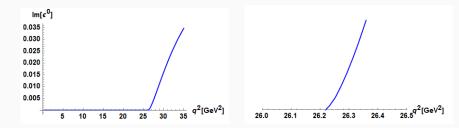
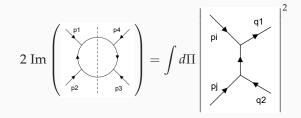


Figure 10: Above diagrams show the ϵ^0 coefficient for the four-point one-loop Feynman integral with same masses ($m = m_b = 4.18 \text{ GeV}$) along with an expanded diagram on the right hand side. The imaginary part remains zero until $q^2 \gtrsim 26.21 \text{ GeV}^2$.

CUTTING RULES: THRESHOLD ANALYSIS



• symmetric kinematics, and with $p_4 = p_1 + p_2 + p_3$,

$$p_1^2 = p_2^2 = p_3^2 = q^2 = -3 \, p_i \cdot p_j$$

• As all the internal lines have the same mass *m*,

$$q^2 > rac{3}{2} m^2$$
.
 $rac{3}{2} m_b^2 = rac{3}{2} imes (4.18 \, {
m GeV})^2 pprox 26.209 \, {
m GeV}^2$

LARGE *n* BEHAVIOR

$$\begin{split} \Pi_{\mathcal{T}} &= \frac{1}{2\beta} \sum_{n} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \frac{1}{(\frac{4n^{2}\pi^{2}}{\beta^{2}}) + \mathbf{k}^{2} + m_{1}^{2}} \times \frac{1}{(\frac{2n\pi}{\beta} + p_{0}^{E})^{2} + (\mathbf{k} + \mathbf{p})^{2} + m_{2}^{2}} \\ &\approx \frac{1}{2\beta} \sum_{n} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \frac{1}{(\frac{2n\pi}{\beta})^{2} + \mathbf{k}^{2}} \times \frac{1}{(\frac{2n\pi}{\beta})^{2} + \mathbf{k}^{2}}, \text{ for } |n| \gg 1 \\ &= \frac{1}{2\beta} \sum_{n} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \frac{1}{(m'^{2} + \mathbf{k}^{2})^{2}} \end{split}$$

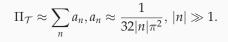
where $m' = \frac{2n\pi}{\beta}$.

LARGE *n* BEHAVIOR

$$\begin{split} \Phi(m,d,B) &= \int \frac{\mathrm{d}^{d}\mathbf{k}}{(2\pi)^{d}} \frac{1}{\left(\mathbf{k}^{2}+m^{2}\right)^{B}} = \frac{1}{(4\pi)^{\frac{d}{2}}} \frac{\Gamma\left(B-\frac{d}{2}\right)}{\Gamma(B)} \frac{1}{\left(m^{2}\right)^{B-\frac{d}{2}}}^{5} \\ \Pi_{\mathcal{T}} &\approx \frac{1}{2\beta} \sum_{n} \underbrace{\frac{1}{(4\pi)^{\frac{3}{2}+\epsilon}} \frac{\Gamma\left(\frac{1}{2}+\epsilon\right)}{1}}_{\text{expand } \epsilon \text{ to } \mathcal{O}(\epsilon)} \frac{1}{\left(\frac{2n\pi}{\beta}\right)^{2(1+2\epsilon)}} \\ &\approx \frac{1}{2\beta} \sum_{n} \frac{\sqrt{\pi}}{(4\pi)^{\frac{3}{2}}} \frac{\beta}{2\pi \left(n^{2}\right)^{\frac{1}{2}+\epsilon}} \\ &= \sum_{n} \frac{1}{32\pi^{2}} \frac{1}{|n|^{1+2\epsilon}}. \end{split}$$

⁵M. Laine and A. Vuorinen, Basics of Thermal Field Theory. Springer International Publishing, 2016.

LARGE *n* BEHAVIOR



· Finite-temperature Correlator Summation Terms an

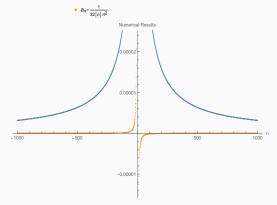


Figure 6:

The pySecDeccomputed $\Pi_{\mathcal{T}}$ terms $a_n \approx \frac{1}{32|n|\pi^2}$ are analyzed by calculating the difference $\Pi_{\mathcal{T}}$ – a_n as a function of *n*. The finite-temperature terms were calculated with the parameter values of $m_1 = m_2 = 1.1, p_0^E =$ $\frac{2\pi}{\beta}, \beta = 0.3, p^2 = 5$

Define

$$C_n = A_n - A_{n+1},$$

where A_n represents individual terms from the summation in Π_s .

$$A_n = \frac{I_{\mathcal{T}}(\omega_n)}{\beta} - \int_{2\pi n/\beta}^{2\pi (n+1)/\beta} \frac{dk_0^E}{2\pi} I_0(k_0^E).$$

PROOF OF CONVERGENCE

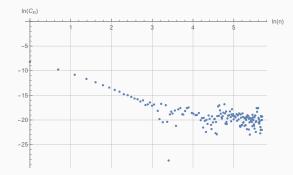


Figure 11: The plot between $\ln(C_n)$ and $\ln(n)$ shows a linear relation with a slope $-\gamma \approx -3.57$ corresponding to $C_n \approx \frac{a}{n^{\gamma}}$. The data in the figure was generated with the same parameters as in Fig. 3.

$$C_n \approx \frac{a}{n^{\gamma}} \Rightarrow \ln(C_n) \approx -\gamma \ln(n) + \ln(a),$$

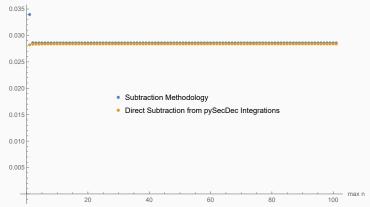
where $\ln(a)$ is defined as the intercept in Fig. 11. Thus we find

$$C_n = A_n - A_{n+1} \approx \frac{a}{n^{\gamma}},$$

with $\gamma \approx 3.57 > 1$.

METHODOLOGY BENCHMARK FOR d = 3 **SPACETIME**

3-Dimensional Finite-Temperature Correction Numerical Results



RELATIONSHIP WITH RESPECT TO EXTERNAL MOMENTA (d = 3)

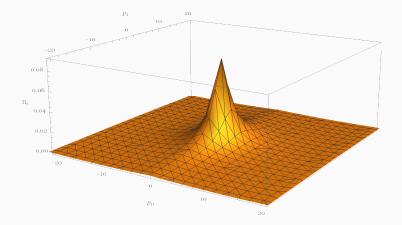


Figure 12: The effects of the external momentum on the d = 3 finite-temperature correction Π_s (Eq. (1)) of the one-loop self-energy topology (with same parameter values as in Fig. **??**).

Relationship with Respect to Temperature \mathcal{T} (d=3)

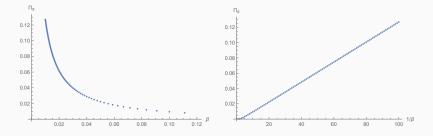


Figure 13: The plot of the finite-temperature correction Π_s as a function of β (left) and $1/\beta$ (right) at d = 3 spacetime. The slope on the right plot is approximately 0.00130617. The parameters used in the calculation are $m_1 = 1.1, m_2 = 1.2, p_\mu = (7, 8, 9, 0)$.

CONVERGENCE REGARDING DIFFERENT β VALUES

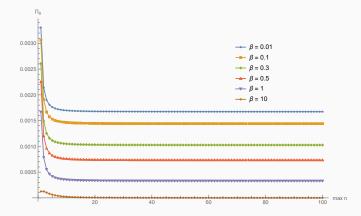


Figure 14: The numerical calculation results from pySecDec of finite-temperature correction Π_s . The β values are shown in the legend and maximum |n| up to 100.

The Convergence of Π_s

Define
$$A_n = \frac{I_T(\omega_n)}{\beta} - \int_{2\pi n/\beta}^{2\pi (n+1)/\beta} \frac{dk_0^E}{2\pi} I_0(k_0^E)$$
. Confirm $A_n \approx \frac{a}{n^{\gamma}}$.

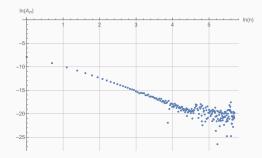


Figure 15: The plot between $\ln(A_n)$ and $\ln(n)$ shows a linear relation with a slope $-\gamma \approx -2.80$ corresponding to $A_n \approx \frac{a}{n^{\gamma}}$.

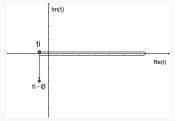
MATSUBARA FORMALISM

◊ The density operator

$$e^{-eta \mathcal{H}} = e^{-eta \mathcal{H}_0} \, \mathcal{U}(t_i - ieta, t_i) = e^{-eta \mathcal{H}_0} \, \mathsf{T} \exp\left[\, i \int_{t_i}^{t_i - ieta} d^4 x \mathcal{L}_I(\phi_{in}(x))
ight]$$

where $\ensuremath{\mathcal{U}}$ is the time evolution operator.

♦ The contour is then $C = [t_i, +\infty] \cup [+\infty, t_i] \cup [t_i, t_i - i\beta].$



 The quantities that describe the thermodynamics of a system in thermal equilibrium are time independent.

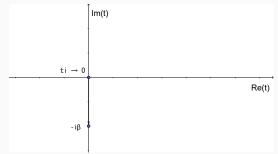


Figure 16: Simplified contour C of thermal time (taking initial thermal time $\rightarrow 0$).