

Charge changing cross section measurements of carbon isotopes at the neutron drip-line

Pranav Subramaniyam Saint Mary's University

Limits of stability

- Nuclear landscape shows stable and • bound nuclei
- Exotic properties observed for nuclei ٠ in the vicinity of drip-line
 - Disappearance of magic numbers

- Halo nuclei

magic number (Z)

Proton drip-line

Introduction

°Li 🚺

Introduction

Halo nuclei

ls wave Weakly bound nucleons form a low 40 10-1 density cloud around a core of normal B Be 10-2 density 3.5 10-3 10-4 Low angular momentum motion for halo particles (1=0, 1) and spatially separated 3.0 10-5 [C-uj] neutron proton He from rest of the nucleus. Hence large R Op wave 25 1.18A^{1/3} overall matter radius. Density 10-20 "Residence in forbidden regions" 14 16 18 10-3 8 10-10-5 I. Tanihata et al., Phys. Rev. proton neutron dripline nuclei stable nuclei Lett., 55 (1985) 2676 ***** 1101111001 0d wave 10-1 continuum 10-2 10-3 more 10-4 neutrons n 10-5 р n p neutron protor 12 8 16 0 8 12 16 R [fm] 3 I. Tanihata et al., Prog. Part. Nucl. Phys. 68 (2013) 215

Proton distribution in neutron-rich carbon isotopes

- Presence of halo neutrons enhances the proton radii of the core nuclei
- Predicted proton radius is almost flat for neutron-rich carbon isotopes (^{20, 22}C)
- Model-independent measurements show a similar trend for ¹²⁻¹⁹C
- Systematic study of proton radii with matter radii will allow characterizing the:
 - Neutron surface thickness

Measuring the proton-distribution radii

- Electron-nucleus scattering and muonic x-ray measurements
- Isotope Shift measurements

٠

- Drawback Low luminosity of rare isotopes close to the drip-line
- Charge-changing cross-section (σ_{cc}) is the total cross-section of all the processes that change the proton number of the projectile nucleus
- Counting the incoming projectiles and emerging

Z unchanged particles on an event-by event basis

Technique

Proton radii determination

- Point proton radius (R_p) is extracted using the Glauber model framework
- Interaction involves only the protons of the projectile nucleus

$$\sigma_{\rm cc} = \int db P_{\rm cc}(b)$$

• The probability of charge changing cross-section at the impact parameter \boldsymbol{b}

$$P_{cc}(\boldsymbol{b}) = 1 - exp\left(-2\sum_{n=p,n}\int\int d\boldsymbol{s}d\boldsymbol{t}T_{P}^{(p)}(\boldsymbol{s})T_{t}^{(N)}(\boldsymbol{t}) \times Re\Gamma_{pN}(\boldsymbol{b}+\boldsymbol{s}-\boldsymbol{t})\right)$$

• σ_{cc} is evaluated with the profile function of nucleusnucleus scattering Γ_{pN} , target with a well-known density distribution. The parameters for PN profile function are given for wide range of energies ranging from 40 A MeV to 800 A MeV B. Abu-Ibrahim et al., Phys. Rev. C., 77 (2008) 034607

, $T_p^{(P)}$ - Thickness function of the projectile's proton density $T_t^{(N)}$ - Thickness function of the target's nucleon density

Geometrical information in the nucleus-nucleus scattering

Y. Suzuki et al., Phys. Rev. C., 94 (2016) 011602

RIBF OVERVIEW

BigRIPS and ZeroDegree Spectrometer

Experimental setup

Particle identification in BigRIPS

Data Analysis

Particle identification in ZeroDegree Spectrometer

Data Analysis

Z identification after the target

Data Analysis

Transmission Technique

- N_{in} and $N_{in\geq Z}$ are identified and counted on an event-by-event basis
- Selection of fully transmitted particles
- Equivalent component of transmission ratio distribution

Preliminary results of σ_{cc}

- The first σ_{CC} measurement of Borromean halo ²²C with ²⁰C (core) + n + n
- A large increase in σ_{cc} is not found for halo nucleus ²²C
- Proton radius for neutron-rich carbon isotopes might be flat as predicted
- ²²C is predicted to have a shrunk neutron halo due to the deformation effects
- Halo radius of ²²C

X-X Sun et al., Phys. Lett. B., 785 (2018) 530

Comparing calculated and measured proton radii

- Extracting the point-proton radius for ^{20,22}C
- Understanding the Nuclear Force:
- Model and accurately describe the nuclei
- *Ab-initio* theory based on first principles

R. Kanungo et al., Phys. Rev. Lett., 117 (2016) 102501

3.2

3.0

Future work

ACKNOWLEDGEMENTS

• Supervisor : Prof. Rituparna Kanungo^{a,b}

S. Bagchi^{a,c,d,}Y.K. Tanaka^{a,c,d}, H.Geissel^{c,d}, P. Doornenbal^e, D.S. Ahn^e, H. Baba^e, K. Behr^c, F. Browne^e, S. Chen^e, M. L. Cortés^e, A. Estradé^e, N. Fukuda^e, M. Holl^{a,b}, K. Itahashi^e, N.Iwasa^f, S. Kaur^{a,g}, S. Y. Matsumoto^h, S. Momiyamaⁱ, I. Murray^{e,j}, T.Nakamura^k, H. J. Ong^l, S. Paschalis^m, A. Prochazka^c, C. Scheidenberger^{c,d}, P. Schrockⁿ, Y. Shimuzu^e, D. Steppenbeck^{e,n}, D. Suzuki^e, H.Suzuki^e, M. Takechi^o, H. Takeda^e, S. Takeuchi^k, R. Taniuchi^{i,m}, K. Wimmerⁱ, K. Yoshida^e.

^aSaint Mary's University, Halifax, Canada
^bTRIUMF, Vancouver, Canada
^cGSI, Darmstadt, Germany
^dJustus-Liebig University, Giessen, Germany
^eRiken Nishina Center, Saitama, Japan
^fTohoku University, Miyagi, Japan
^gDalhousie University, Halifax, Canada
^hKyoto University, Kyoto, Japan
ⁱUniversity of Tokyo, Tokyo, Japan
^jUniversit Paris-Saclay, Orsay Cedex, France
^kTokyo Institute of Technology, Tokyo, Japan
^lOsaka University, Osaka, Japan
^mUniversity of York, York, United Kingdom
ⁿUniversity of Tokyo, Saitama, Japan
^oNiigata University, Niigata, Japan

