

β-decay of ⁶⁸Mn: Probing the N=40 Island of Inversion

Rashmi Umashankar

University of British Columbia (UBC) / TRIUMF

Nuclear Shell Model

- Each nucleon moves independently in a mean-field describing the average interaction with the other nucleons
- Reproduces magic numbers obtained empirically

2

Kenneth S. Krane, Introductory Nuclear Physics (1988) E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker. Rev. Mod. Phys. 77, 427 (2005)

Islands of Inversion

- Ground states dominated by deformed npnh configurations instead of 0p0h
- Shell and subshell closure features disappear
 - *E*(2⁺)
 - B(E2): Transition probability
- N=8, 14, 20, 28, 40: Archipelago of islands of shell breaking

Suggested magicity of N=40

- Large energy gap between the *pf* shell and neutron 0g_{9/2} shell
- Sub-shell closure at N=40
- Evidenced by ⁶⁸Ni (*Z*=28):
 - Doubly magic behavior
 - Large E(2⁺) = 2.033 MeV
 - Small B(E2; 0⁺→ 2⁺) = 3.2 (7)
 W.u

However,

N=40 Island of Inversion

 Systematics indicate a sudden increase in collectivity around N=40 and Z<28

Cr isotopes: 2_1^+ energies decrease gradually beyond *N*=32 with lowest $E(2_1^+)$ measured at 390 keV for ⁶⁶Cr Energy of the 2_1^+ state changes from 2033 keV in ⁶⁸Ni to 573 and 517 keV in ⁶⁶Fe and ⁶⁸Fe, respectively

C. Santamaria et al. Phys. Rev. Lett.115 (2015) S. Naimi et al. Phys. Rev. C 86 (2012)

Merging the N=40 and N=50 Islands of Inversion

- Suggested extension of the island of inversion at N=40 for more neutronrich isotopes towards N=50
- Supported by large-scale shellmodel calculations using the PFSDG-U interaction
- Spectroscopic information required to understand this bridge

2⁺ energy systematics in Ni and Cr isotopic chains

Santamaria, et al., PRL 115, 192501 (2015) Nowacki, et al., PRL 117, 272501 (2016) Taniuchi, R., Santamaria, C., Doornenbal, P. et al. *Nature* 569, 53–58 (2019)

Existing Literature

- ⁶⁸Fe populated through β-decay of ⁶⁸Mn
- Preliminary level scheme
- Tentative spin-parity assignments for (2⁺) and (4⁺) states in ⁶⁸Fe
- 2035 keV level assigned either (0⁺) or (2⁺)

G. Benzoni, et al. Physics Letters B, 751:107-112 (2015).

Existing Literature

- Populated using a ⁹Be(⁶⁸Co, ⁶⁸Fe + γ)X charge-exchange reaction
- Expansion of level scheme through coincidence analysis

Experimental Setup

- S1723 at TRIUMF, Vancouver
- β-decay of ⁶⁸Mn

	z	64Cu	65Cu	66Cu	67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79Cu	80Cu
Z=28		63Ni	64Ni	65Ni	66Ni	67 Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78Ni	79Ni
	27	62Co	63Co	64Co	65Co	66Co	67Co	68Co	69Co	70Co	71Co	72Co	73Co	74Co	75Co	76Co	77Co	
		61Fe	62Fe	63Fe	64Fe	65Fe	66Fe	67Fe	68Fe	69Fe	70Fe	71Fe	72Fe	73Fe	74Fe	75Fe		
	25	60Mn	61Mn	62Mn	63Mn	64Mn	65Mn	66Mn	67Mn	68Mn	69Mn	70Mn	71Mn					
		59Cr	60Cr	61Cr	62Cr	63Cr	64Cr	65Cr	66Cr	67Cr	68Cr							
	23	58V	59V	60V	61 V	62V	63 V	64 V	65 V	66V								
		57 Ti	58Ti	59Ti	60Ti	61Ti	62Ti	63Ti										
5	21	56Sc	57Sc	58Sc	59Sc	60Sc	61Sc											
		35		37		39		41		43		45		47		49		N

N=40

N=50

Experimental Setup

 16 BGO Suppressed HPGe clovers

- 15% efficiency at 1332 keV
- 4096 crystal pairs at 52 unique angles for γ - γ angular correlation studies
- SCEPTAR and ZDS
 - β tagging scintillators
- 8 BGO Suppressed LaBr₃(Ce)
 - Lifetime measurements via fast-timing techniques

SCEPTAR

LaBr₃(Ce)

ZDS

 ~50 hours of beam at ~20 pps → x10⁵ more statistics than Benzoni et al.

 β-tagging reduces room background

γ singles, any Beta Prompt Time Gated

- Confirm γ -ray energies from previous β-decay studies
- Plenty of new γ lines

Coincidence Analysis

 γ - γ matrix, any β Prompt Time Gated

Coincidence Analysis

γ - γ matrix, any β Prompt Time Gated

Future Work

- Complete the analysis
 - Expand level scheme
 - Firm spin assignments through angular correlation analysis
 - Lifetime measurements
- Full decay chain analysis (⁶⁸Co, ⁶⁸Ni, ⁶⁷Fe, ⁶⁷Co, ⁶⁷Ni)
- Further insight into the nuclear structure in/around N=40 and study its connection with N=50 Iol

THE UNIVERSITY **OF BRITISH COLUMBIA**

Thank you Merci

RAA

R. Umashankar^{1,2}, B. Olaizola³, V. Vedia¹, A.B. Garnsworthy¹, C. Andreoiu⁴, G.C. Ball¹, S.S. Bhattacharjee⁵, S. Buck⁶, R. Caballero-Folch¹, I. Dillman¹, E. Dunling¹, E.G. Fuakye⁴, F.H. Garcia⁴, P.E. Garrett⁶, S. Georges¹, C. Griffin¹, G. Grinyer⁷, G. Hackman¹, K. Kapoor⁷, G. Leckenby^{1,2}, R.S. Lubna¹, M. Martin⁴, C. Natzke⁸, M. Rocchini⁶, N. Saei⁷, Y. Saito^{1,2}, M. Satrazani⁹, D. Shah⁷, J. Smallcombe⁹, P. Spagnoletti⁴, C.E. Svensson⁶, D. Yates^{1,2}, T. Zidar⁶

- TRIUMF
- 2. UBC
- 3. CERN
- SFU 4.
- 5. CTU, Prague
- 6. UoGuelph
- 7. UoRegina
- 8. Colorado Mines
- 9. UoLiverpool

