

Bayesian Analysis in Parity Violating Electron Scattering Experiments

Elham Gorgannejad

University of Manitoba Winter Nuclear and Particle Physics Conference, 2022

Parity Violating Electron Scattering (PVES) Experiment

https://www.cnet.com/pictures/slac-a-2-mileparticle-accelerator-next-to-stanford/

MESA accelerator layout https://www.mesa.uni-mainz.de/eng/

https://bateslab.mit.edu

https://en.wikipedia.org/wiki/Thomas Jefferson National Accelerator Facility

Parity Violating Asymmetry

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

 $\sigma_{\rm R}$ and $\sigma_{\rm L}$ are the probability cross-sections for incident right and left-handed electrons.

 A_{PV} arises from the interference of the weak and electromagnetic amplitudes

Values of A_{PV} in the range from 10^{-4} to 10^{-8} can be measured with good accuracy

Measurements of Parity Violating Asymmetry

Measurements of Parity Violating Asymmetry

Iniversity

$$A_{calc}^{ij} = (1 - f_{NB}^{i})[(1 - f_{\pi}^{i})(A_{e}^{L}cos\theta_{P}^{j} + A_{e}^{T}cos\theta_{P}^{j}sin\phi^{i}) + f_{\pi}^{i}(A_{\pi}^{L}cos\theta_{P}^{j} + A_{\pi}^{T}cos\theta_{P}^{j}sin\phi^{i})]$$

i: detector index

j: data set index (2 data sets)

 ϕ : azimuthal angle:

 θ_P : electron-spin angle during different data taking modes

R

Bayesian analysis properties:

- Using probability statements
- Treating the parameters in a statistical model as random
- ✓ Using a prior distribution to quantify our knowledge about the parameter
- Using the conditional distribution of parameters, given the data to update our prior knowledge
- Update from the prior to the posterior via the Bayes theorem

Bayes' Law:
$$p(A | B) = \frac{p(B | A) * p(A)}{p(B)}$$

Bayes rule:
$$p(\boldsymbol{a}|\boldsymbol{d}, I) = \frac{p(\boldsymbol{d}|\boldsymbol{a}, I) p(\boldsymbol{a}|I)}{p(\boldsymbol{d}|I)}$$

- \checkmark We want to infer the parameters a of a model M, based on data d
- ✓ Use Bayes rule, which gives the *posterior*: $p(a|d,M,I) \propto p(d|a,M,I) p(a|M,I)$.

I represents general information

p(d | a, M, I) is the *likelihood*, the probability of the observed data, given the parameters, model, and general info

p(a | M, I) is the *prior*, which represents what we know about the parameters exclusive of the data

Generating data based on model

✓ Model:

$$A_{calc}^{ij} = (1 - f_{NB}^{i})[(1 - f_{\pi}^{i})(A_{e}^{L}cos\theta_{P}^{j} + A_{e}^{T}cos\theta_{P}^{j}sin\phi^{i}) + f_{\pi}^{i}(A_{\pi}^{L}cos\theta_{P}^{j} + A_{\pi}^{T}cos\theta_{P}^{j}sin\phi^{i})]$$

Component asymmetry distributions

Comparison of results

	Value	Uncertainty
A_e^L	-5.25	1.49
A_e^T	12.3	3.6
A_{π}^{L}	25.4	9.0
A_{π}^{T}	-60.1	19.3

Results from Qweak experiment

	Value	Uncertainty
A_e^L	-5.65	1.01
A_e^T	8.92	2.23
A_{π}^{L}	23.42	6.69
A_{π}^{T}	-74.56	14.84

Example of an extraction with Bayesian method

