SiPM Stability Tests

Lucas Darroch for the nEXO collaboration Virtual Presentation WNPPC 2022 February 18

- Neutrino Osc. $\Rightarrow \, m_
 u
 eq 0$
- Dirac mass $\Rightarrow
 u_R$

Dirac mass term for neutrino:

$$L_D = -m_D (ar{
u}_R
u_L + ar{
u}_L
u_R)$$

Why is the Dirac mass so small?

Majorana mass term for neutrino: $L_M=-rac{1}{2}Mig(ar{
u}_R^C
u_R+ar{
u}_R
u_R^Cig) \ \Psi^C=\hat{C}\hat{P}\Psi=i\gamma^2\gamma^0\Psi^\star$

Standard Model of Elementary Particles

• $0\nu\beta\beta \Rightarrow \nu$:Majorana particle • $2\nu\beta\beta$ SM process

Image from Vogel, Petr. "Neutrinoless double beta decay." *AIF Conference Proceedings*. Vol. 870. No. 1. AIP, 2006.

- $2\nu\beta\beta$ spectrum continuous;
- 0vββ spectrum sharply peaked

- Single phase TPC
- 5 tonnes LXe, 90% ¹³⁶Xe
- Ionization and scintillation signals recorded
- Sensitivity ~10²⁸ years for 0vββ half-life¹

[1] Adhikari, G., et al. "nEXO: neutrinoless double beta decay search beyond 1028 year half-life sensitivity." *Journal of Physics G: Nuclear and Particle Physics* 49.1 (2021): 015104.

SiPM Stability Tests - Darroch

Images from AI Kharusi, S. et al. "nEXO pre-conceptual design report." *arXiv preprint arXiv:1805.11142* (2018).

Liquid Xenon Photon Detector with Highly Granular Scintillation Readout for MEG II Experiment

W. Ootani ICEPP, The University of Tokyo on behalf of MEG II collaboration

Calorimetry for the High Energy Frontier (CHEF2019) Nov. 25th-29th, 2019, Fukuoka, Japan

A Surprise...

Significant degradation of MPPC VUV-sensitivity!

- Seems correlated with beam ON/OFF
- Large degradation for VUV-sensitivity (\leftrightarrow slight degradation for visible light)
- Degradation is quite fast: (~0.08%/hour)
- We can't survive even for one year...

https://indico.cern.ch/event/818783/contributions/3598489/attachments/1950386/3237558/MEG_Ootani191125_compressed.pdf

- HPK 4x4 mini tile (VUV4)
- RTD-lugs coupled to PCB

PCB designed at Brookhaven National Lab

Environmental Test Stand (cryostat):

- Large surface area: A ~ 150 cm²
- Stable operation: $\sigma_{T} \sim 1 \text{ mK}$ (3h)
- Demonstrated range: 120 295 K
- Turnaround time: T ~ 1 day

Characterization Measurements:

 Record scintillation spectrum from GXe excited by Cf252

Procedure:

- 1. Characterization Measurements
- 2. Flashlamp lightmap
- 3. Flash 10^x photons (no bias on SiPM 12)
- 4. Return to step 1
- 5. When >> 10^14 /mm² photons flashed, anneal SiPM, return to step 1

SiPM Stability Tests - Darroch

Cf252 Truncated Spectrum

Sensitivity to VUV Light

SiPM Gain

Breakdown Voltage

Conclusion

- HPK VUV4 have been tested under high density UV light
- No change observed for: PDE, Gain, Breakdown Voltage

Arthur B. McDonald Canadian Astroparticle Physics Research Institute **INNOVATION.CA**

CANADA FOUNDATION FOR INNOVATION

FONDATION CANADIENNE POUR L'INNOVATION

Fonds de recherche Nature et technologies Québec 🍻 🕸

SiPM Stability Tests - Darroch

Type 1 See-saw Mechanism

Seesaw mechanism helps make sense of light neutrinos:

$$m_{\pm} \approx \frac{1}{2}M \pm \frac{1}{2}\left(M + \frac{2m_D^2}{M}\right)$$
$$m_{-} \approx \frac{m_D^2}{M} \qquad m_{+} \approx M$$

- Dirac mass for neutrino ~ GeV
- Majorana mass large ~ 10¹¹ GeV
- Light neutrino state ~ 10 meV

Light neutrino state dominated by left(right)-handed chiral (anti)neutrino states; heavy neutrino state dominated by right(left)-handed chiral (anti)neutrino states.

$$\begin{split} \nu_{-} &\approx \left(\nu_{L} + \nu_{L}^{c}\right) - \frac{m_{D}}{M}\left(\nu_{R} + \nu_{R}^{c}\right) \\ \nu_{+} &\approx \left(\nu_{R} + \nu_{R}^{c}\right) - \frac{m_{D}}{M}\left(\nu_{L} + \nu_{L}^{c}\right) \end{split}$$

Mohapatra, R. N., et al. "Theory of neutrinos: a white paper." Reports on Progress in Physics 70.11 (2007): 1757.

Event reconstruction in LXe:

- Detection of scintillation and ionization signals
- Full energy reconstruction
- Full position reconstruction
- Event multiplicity

Images from Albert, J. B., et al. "Improved measurement of the $2\nu\beta\beta$ half-life of 136 Xe with the EXO-200 detector." *Physical Review C*89.1 (2014): 015502.

Amplitude Sampling

- SPE max when sampling ~ 2 ns post trigger
- Pulses sampled ~ 2ns post trigger for all measurements
- Similar method for flash lamp
- Events with pe > 4.5 crosses sampling window before peak

SiPM Stability Tests - Darroch

Filter Calibration

Testing setup for lens/filter characterization

Lens, filter, and aperture mounted inside of the Lamp Holder

Charge-Gain

