





#### Mirror Design for an ARICH Detector in a Hadron Production Experiment

#### M.Sc. Student: Bruno Ferrazzi

Supervisor: Dr. Nikolay Kolev Co-supervisor: Dr. Mauricio Barbi



59th Winter Nuclear & Particle Physics Virtual Conference

February 17, 2022



# What is the motivation?



Muon Monitors

To reduce neutrino production modeling uncertainties in accelerator-based and atmospheric neutrino experiments.

Therefore help in the neutrino nucleus cross-section measurements, sterile neutrino searches, neutrino mass hierarchy and CP violation.

# Horris Decay Pipe 10 m 30 m 675 m Hadron 5 m Rock 12 m 18 m Konitor 5 m Rock 2 Pavlović

#### SK: Positive Focussing Mode, $v_{\mu}$



Extremely difficult to measure the neutrino beam flux as a function of energy so Monte Carlo simulations based on hadron interactions and decays are used to make predictions of the neutrino flux.

Many of the hadron interaction data relevant to GeV-energy neutrino flux predictions are insufficient for the precise neutrino flux predictions. Reduction of the flux uncertainty to levels of 3% are necessary.

# What is the motivation?



Experiment to Measure the Production of Hadron At a Test beam In Chicagoland

Measurements with beam energies below ~15 GeV (not currently accessible in NA61/SHINE beam line).

Measurements connecting production from  $\sim 2$  GeV to 120 GeV beams in single experiment.

Measurements on a broad range of target materials relevant for out-of-target interaction modeling.

New detection methods with independent systematic effects from NA61/SHINE.



# What is an ARICH and why it needs a mirror?

#### Aerogel Ring Imaging CHerenkov detector





![](_page_5_Figure_2.jpeg)

![](_page_6_Figure_1.jpeg)

Example:

Photons reflected histogram area: 320232.84 Photons that hit the mirror histogram area: 488112.91 Ratio of the reflected photons : 0.66

![](_page_7_Figure_1.jpeg)

Companies provided the reflectance curves for the mirror materials. The reflectance was then incorporated into a Geant4 simulation. Miro Silver material showed a better performance reflecting most of the signal photons.

![](_page_8_Figure_1.jpeg)

The reflection profile was measured with a pin-photodiode to study flatness.

Mirror Design for an ARICH Detector in a Hadron Production Experiment

![](_page_9_Figure_1.jpeg)

### Thank You !

![](_page_10_Picture_1.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

![](_page_11_Picture_3.jpeg)

![](_page_12_Figure_0.jpeg)

![](_page_12_Figure_1.jpeg)

| Characteristic                      | MIN | TYP  | MA   |
|-------------------------------------|-----|------|------|
| Wavelength                          | 400 | 405  | 41   |
| Optical Output Power (CW)           | 0.8 | 0.9  | <1.  |
| Polarization State Extinction Ratio | 20  | 20   |      |
| Power Stability (8 Hours)           | 5   | 1.74 | 5    |
| Power Stability (1 Minute)          | ÷.  |      | 0.5  |
| Axis Deviation <sup>b</sup>         |     | 14   | 5    |
| Beam Diameter <sup>c</sup>          | 3   | 3.0  | - 10 |
| Beam Divergence <sup>d</sup>        | -   | -0.6 |      |
| Operating Voltage                   | 4.9 |      | 5.2  |
| Operating Current (CW)              |     | 70   | 90   |

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

#### 7001 Switch Device 6487 Picoammeter

KSPDB00307EA

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

UNIT

nm

mW

dB %

%

mrad mm

mrad

٧

mA

![](_page_12_Figure_8.jpeg)

![](_page_13_Picture_0.jpeg)

### **EMPHATIC Measurement Plan**

| Was supposed to be Spring 2020, but then COVID-19 happened |                     |                                                                                                                                                |                                    |                                                                                |                                                                                                   |  |  |
|------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| 1<br>(Engineering<br>run)                                  | Fall 2021           | Beam Aerogel counter<br>FTBF SSDs<br>Small aperture magnet<br>Small aperture A-RICH<br>ToF counters<br>Lead glass calorimeter                  | 4, 8, 12, 20, 31,<br>60, 120 GeV/c | C, Al, Fe                                                                      | <ul> <li>Low-acceptance<br/>(150mrad) hadron<br/>production with<br/>PID up to 8 GeV</li> </ul>   |  |  |
| 2                                                          | Spring/Fall<br>2022 | Beam Aerogel counter<br>FTBF SSDs<br>Large-area SSDs<br>Full aperture magnet<br>Full aperture A-RICH<br>ToF counters<br>Lead glass calorimeter | 4, 8, 12, 20, 31,<br>60, 120 GeV/c | C, Al, Fe,<br>H <sub>2</sub> O, Be,<br>B, BN,<br>B <sub>2</sub> O <sub>3</sub> | <ul> <li>Full-acceptance<br/>(350mrad) hadron<br/>production with<br/>PID up to 8 GeV</li> </ul>  |  |  |
| 3                                                          | 2023                | Same as Phase 2 +<br>Extended RICH                                                                                                             | 20, 31, 60, 80,<br>120 GeV/c       | Same as<br>Phase 2 +<br>Ca, Hg, Ti                                             | <ul> <li>Full-acceptance<br/>(350mrad) hadron<br/>production with<br/>PID up to 15 GeV</li> </ul> |  |  |
| 4                                                          | 2024                | 350 mrad acceptance<br>spectrometer                                                                                                            | 120 GeV/c                          | Spare<br>NuMI<br>target and<br>horn                                            | Charged-particle<br>spectrum<br>downstream of horns                                               |  |  |

#### **Tracking Algorithm**

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

End of a Event