

Characterization of a Spatially resolved multi-element laser ablation ion source

Authors: K. Murray, C. Chambers et al. McGill University Physics Department Date: 18/02/2022

WNPPC 2022

Overview

<u>Context</u>

- nEXO is a 0vββ experiment that uses a tonne-scale liquid Xe TPC.
- Ba-tagging is a potential future upgrade to nEXO, that aims to suppress backgrounds by extracting and identifying the daughter Ba ion of 0vββ decay.

$$^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^{-}$$

Extract from TPC volume and identify.

Source: nEXO Pre-Conceptual Design Report arXiv:1805.11142

<u>This Talk</u>: Discussion of the development of multi-element laser ablation ion sources and their application to Ba-tagging – specifically, mass spectrometry.

Barium-tagging in Canada

K. Murray - WNPPC 2022

What is the LAS

The Laser Ablation Ion Source (LAS)

UV Visible **Beam expander Focussing lens**

- Can form 2D rasterized images of the target. ٠
- Can establish a coordinate system on the surface of the ٠ target.
- Can selectively ablate different materials on multi-element ٠ target (50 um res).

Ion source-assembly

View through quadrupoles

Motorized mirror

Establishing a Coordinate System

Physik Instrumente N-472

Measuring distances on the target surface is useful...

nEX®

<u>Coordinate Transformation</u>: $(x', y') = (S_x x, S_y y),$

(x',y') – coordinates on the target surface. (x,y) – coordinates of the mirror actuators.

Measured Scaling Factors:

	Scaling Factor		Smallest Step Size	
Mirror Mount	S_x	S_y	$x_{min}(\mu m)$	y _{min} (μm)
TL KS1-Z8	19.2(3)	13.9(2)	3.84(6)	2.78(4)
PI N472	21.8(3)	14.9(2)	1.09(2)	0.75(1)

Spatial Resolution

Governed primarily by laser spot diameter on target surface – can be calculated theoretically.

Beam quality: $M^2 = 1.32(7)$, F = 750 mm, $\lambda = 349$ nm, D = 3.9(1) mm

Spot diameter calculated as 133(7)µm. $2w_0 = \left(\frac{4\lambda}{\pi}\right) \left(\frac{F}{D}\right)$

nEX

K. Murray - WNPPC 2022

Spatial Resolution ctd.

4589

4619

Diameter of ablated crater may be smaller than the laser spot 1/e² beam diameter - depending on the fluence.

Can be investigated by scanning laser spot over junctions between metals.

Ion Transport Efficiency

- Eff = (ion current at Faraday cup)/ (ion current at target).
- Mean efficiency across the surface of the target 2.2(7)%.

A wide quadrupole spacing results in a lower ion transport efficiency, but a larger scanning range.

Quadrupole electrodes can be brought together for higher bending efficiency, but a smaller scanning range.

The MRTOF LAS

Condensed version of LAS used to commission the Multi-Reflection Time of Flight Mass-Spectrometer (MRTOF).

K. Murray - WNPPC 2022

Outlook

Conclusions

- Coordinate system allows for selective ablation of different materials.
- Materials in target can span large mass range ideal for calibrating mass spectrometer.
- Spatial resolution characterized as 50µm not limited by mirror steps.

Next Steps

- Increase the number of revolutions in the MRTOF.
- Tune the time focus for maximum MRP.

Thank you for listening!

Acknowledgements

Thanks to all the work by many undergraduate and graduate students!

The LAS paper: Published in the international journal of mass spectrometry https://doi.org/10.1016/j.ijms.2021.116763

> Characterization of a Spatially resolved multi-element laser ablation ion source

> K. Murray ^{a, *}, C. Chambers ^a, D. Chen ^a, Z. Feng ^a, J. Fraser ^{a, 1}, Y. Ito ^{a, 2}, Y. Lan ^a, S. Mendez ^{d, 3}, M. Medina Peregrina ^a, H. Rasiwala ^a, L. Richez ^a, N. Roy ^a, R. Simpson ^{a, 4}, I. Dilling ^{b, c}, W. Fairbank Ir. ^e, A.A. Kwiatkowski ^b, T. Brunner ^a

^a McGill University, Montreal, Canada

^b TRIUMF. Vancouver. Canada

^c University of British Columbia, Vancouver, Canada

^d Maastricht University, Maastricht, Netherlands

e Physics Department, Colorado State University, Fort Collins, CO, USA

for Innovation

K. Murray - WNPPC 2022

Microscope Measurements

Does the laser spot move on the target surface as expected?

- Ablation craters made by the laser spot are visible under an optical microscope.
- Distances between craters an be used to test the coordinate transformation directly.

Measured: $\Delta x = 441.6(6) \mu m$, $\Delta y = 305.1(9) \mu m$

Calculated: $\Delta x = 438(6) \mu m$, $\Delta y = 302(4) \mu m$

Ablation craters in silicon and silver target.

Scanning Range

Fifth extraction electrode

Wide quadrupole spacing supports a scan range up to 50 mm in width.

