One step closer to Atomic Parity Violation (APV) in Francium: First Observation of highly forbidden magnetic dipole (M1) $7S \rightarrow 8S$ transition in Francium

WNPPC 2022

Student: Anima Sharma Advisor: Gerald Gwinner University of Manitoba

Feb 17, 2022.

Mission of our project

□ Interest: Study 7S \rightarrow 8S transition in Francium (Fr). Forbidden because of states with same parity.

Trickish savior: Z^0 boson exchange b/w atomic electron and quarks in nucleus \rightarrow Parity violation (PV) atomic Hamiltonian $H_{PV} \rightarrow$ mixes atomic S and P states \rightarrow atomic orbitals lose definite parity.

$$< n' S' \mid H_{PV} \mid nS > \propto Z^3.$$

Atomic Parity Violation

(APV)

Transition rate of $7S \rightarrow 8S$ transition

Transition Rate, $R_{7S} \rightarrow 8S$ Sum of three distinct contributions: **8**S F' $E1_{PV}$ |² $R_{7S \to 8S} \propto | E_{1ST} +$ Not Stark-induced transition Magnetic dipole Parity violating detected Excite PC amplitude amplitude PC amplitude 506 nm f~10⁻¹³ $f \sim 10^{-10}$ $f \sim 10^{-21}$ 7P. (unobservable) $E1_{ST}$ Past Present **Progress Status:** *M*1, Detection $E1_{PV}$. * f is oscillator strength of the corresponding transition. 817 nm **Signal of Interest:** Interference term of PC and PV amplitudes. **Experimental approach** F 7S Laser beam excites highly forbidden $7S \rightarrow 8S$ transition Francium (211) Decay sequence is 8S \rightarrow 7P \rightarrow 7S Measure transition rate on 7P \rightarrow 7S decay $E1_{PV} = K_{PV} Q_{W}$ Atomic structure factor from theory (K_{PV}) Weak charge (Q_{W}) : Our ultimate goal to test the Standard Model. Measure $\frac{E1_{PV}}{E1}$.

Francium Trapping Facility @ Triumf

U Why ISAC?

Fr has no stable isotope \rightarrow need radioactive beam facility

U Why Trap?

- → not enough Fr production for atomic beam
- → Re-use atoms in a trap
- **G** Suspend million of Fr atoms at μK temperature
- \Box Trap atoms on $7S_{1/2}$ (F = 5) $\rightarrow 7P_{3/2}$ (F' = 6) transition

Precise control of electric and magnetic fields

□ Test procedure with Rubidium (Rb) (except APV → too small)

Stark-induced amplitude: primary contributor

 $\varepsilon \mid E$

□ The Stark induced E1 $|7S_{1/2}, F, m_F > \rightarrow |8S_{1/2}, F', m_{F'} >$ is

 $E1_{ST}(\mathsf{F}', m_{F'}, \mathsf{F}, m_{F}) = \alpha \ E. \epsilon \ \delta_{F'F} \delta_{m_{F'}m_{F}} + (i \beta \ (E \times \epsilon) \cdot) < \mathsf{F}', m_{F'} |\sigma|\mathsf{F}, m_{F} > 0$

where σ is the Pauli spin operator,

- E is the static electric field,
- ϵ is the laser polarization.

□ Transition Polarizabilities

 \rightarrow Scalar, α , $\Delta F = 0$ Started with α signal, $\varepsilon ||E|$

 \rightarrow Vector, β , $\Delta F = \pm 1$ Saw β signal in 2018.

 $\square \beta$ is 25 × smaller than α [2].

Motivation for M1:

- $\rightarrow \beta$ needs to be known accurately \rightarrow extract $E1_{PV}$,
- $\rightarrow \beta$ can be calibrated via measurement of M1.

Shifted our focus now to M1

WNPPC 2022 [2] M. S. Safronova, W. R. Johnson, and A. Derevianko, Phys. Rev. A, 60, pp. 4476–4487, 1999.

Power Build Up Cavity (PBC): Key to observe M1 transition

□ PBC: A spherical mirror resonator where the laser beam bounces back and forth between two highly reflective mirrors.

UHV compatible power build up cavity.

□ Increase in laser power in interaction region by ~ 4000.

□ Use Pound-Drever-Hall (PDH) technique → lock the cavity $\rightarrow TEM_{00}$ mode.

 \Box Cavity length fixed \rightarrow error signal feedback with piezos.

Accomodates the electric field plates, MOT beams.

□ Stay locked with our vibration sensitive environment.

 $T_1 \approx 900 \text{ ppm}, T_2 \approx 50 \text{ ppm},$ radii of curvature, $R_1 = R_2 = 100 \text{ cm},$ separation between mirrors = 16 cm.

Understanding the magnetic dipole amplitude, M1

$$M1 (F', m' \to F, m) = \langle 8S_{F', m'} | \overrightarrow{\mu_M} | \overrightarrow{B} | 7S_{F, m} \rangle$$

Where
$$\overrightarrow{\mu_M} = \overrightarrow{\mu_B} (g_L L + g_S S + g_I I)$$
.
 $\overrightarrow{\mu_B}$ is Bohr magneton.

M1 vanishes in non-relativistic approximation because spatial parts of different $nS_{1/2}$ are orthogonal.

$$M1 (F, m \to F', m') = M1' (\hat{k} \times \hat{\varepsilon}) < F', m' |\vec{\sigma}| F, m >,$$

M1
$$\propto$$
 $M1_{rel}$ + $(F - F') M1_{hf}$.

Where $M1_{rel}$ is the relativistic and spin orbit effect \rightarrow difficult! $M1_{hf}$ is from off-diagonal hyperfine interaction.

Calculable to high precision,

Only calibrated amplitude in our system compared to all others.

To measure:

Observation of M1 transition in Sept. 2021

□ First observation of 'free transition' \rightarrow unassisted by 'Stark mixing' \rightarrow M1 transition (f~10⁻¹³). □ Made possible by PBC, 4000 folds sensitivity improvement since 2018.

Towards determination of $\frac{M1}{\beta}$

- \Box Measure $\frac{M1}{B}$ on $\Delta F = \pm 1$ and know $M1_{hf} \rightarrow$ to calibrate β and $M1_{rel}$.
- \Box 2021 beamtime: only $\Delta F = -1$ due to target problems,
- $\Box \rightarrow$ use predicted values for β and $M1_{hf}$ to measure $M1_{rel}$.

Preliminary data analysis results [3]	Experiment	Theory
$\frac{M1}{\beta} = \frac{M1_{rel} + M1_{hf}}{\beta}$	144 \pm 12 V/cm.	-
M1 _{rel}	$(131 \pm 11) \times 10^{-5} \mu_B$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Changes/implementations ahead

 $\hfill\square$ Improve our detection system, photon counting mode \rightarrow current mode.

 \Box Determine $M1_{hf}$ precisely \rightarrow establish the value of $\beta \rightarrow$ characterizes $E1_{PV}$ signal.

Our preliminary results \rightarrow first measurement will have better than 10% accuracy on the M1 rate, similar difference to between theory and experiment of the analogous transition in Cs, where the best APV experiment was done.

 \Box Will implement optical pumping \rightarrow know magnetic (m_F) sublevel dependence of atoms \rightarrow better understand the signal.

[4]. Safronova et al. Phys. Rev. A 95, 042507, 2017(table VI).

Summary

Observed an extremely weak transition in radioactive Fr.

Highly motivated in pursuing the APV measurement.

□ Will improve our detection system.

 \Box Will complete the $\frac{M1}{\beta}$ measurement.

Fig. shows an intense beam of 506 nm light in PBC, and electric field plates[5].

Thank you!

Funding supported by:
NSERC
NRC/TRIUMF
U o Manitoba
U o Maryland

University of Manitoba

∂TRIUMF

→ Matt Pearson, Seth Aubin, Gerald Gwinner, Eduardo Gomez, Mukut Kalita, Alexandre Gorelov, John Behr, Luis Orozco, Tim Hucko, Anima Sharma.