Status of the KDK Experiment: A Measurement of ⁴⁰K Relevant for Rare-Event Searches

Lilianna Hariasz

Queen's University On behalf of the KDK Collaboration

February 18, 2022

WNPPC 2022, Virtual

- Naturally-occuring radioactive isotope $(0.0117(1)\%^{[2]} {}^{40}K$ in ${}^{nat}K)$
- E.C. \rightarrow g.s. $(I_{\rm EC})$ is ill-known. Predictions: $\sim (0.0 - 0.3)\%$

1. Rare-event searches

- Contaminant in NaI volumes (e.g. DAMA/LIBRA, SABRE, COSINUS)
- Irreducible background at $\sim 3 \text{ keV}$ [3]

- Naturally-occuring radioactive isotope
- E.C. \rightarrow g.s. $(I_{\rm EC})$ is ill-known. Predictions: $\sim (0.0 - 0.3)\%$

2. Geochronology

- Lifetime $\sim 10^9$ y
- K-Ar (& Ar-Ar) dating dependent on ⁴⁰K decay scheme [4]
- Ill-known $I_{\rm EC}$ becoming an important systematic

- Naturally-occuring radioactive isotope
- E.C. \rightarrow g.s. $(I_{\rm EC})$ is ill-known. Predictions: $\sim (0.0 - 0.3)\%$

3. Nuclear Theory

- $I_{\rm EC}$ is an extremely rare unique third-forbidden decay
- Theoretical predictions vary widely

- Naturally-occuring radioactive isotope
- E.C. \rightarrow g.s. $(I_{\rm EC})$ is ill-known. Predictions: $\sim (0.0 - 0.3)\%$

The KDK Collaboration

International collaboration making the first measurement of Potassium-40's rare $I_{\rm EC}$ decay

Instrumentation paper (NIM A, Stukel et al., 2021) available **here**

KDK Setup I

• EC event:	• EC^* event:
X-ray/Auger	X-ray/Auger
	& gamma

Inner Silicon Drift Detector $(SDD)^{\dagger}$ (MPP/HLL Munich); ~ 10 g Outer Modular Total Absorption Spectrometer (MTAS) (Oak Ridge National Laboratory); ~ 1,000 kg

KDK measures $\rho = I_{EC} / I_{EC*}$

 $^{\dagger} \mathrm{or}~\mathrm{KSI}$

$\label{eq:KDK} {\rm KDK \; Setup \; II \; (\; \; https://doi.org/10.1016/j.nima.2021.16559 \;) }$

To discriminate $I_{\rm EC}$ from $I_{\rm EC^*}$ γ -tagging efficiency must be very well-known.

Measurement of 54 Mn γ efficiency is combined with ratio of Geant4-simulated values

Leading Systematic - MTAS Gamma-Tagging Efficiency, ⁵⁴Mn

To discriminate $I_{\rm EC}$ from $I_{\rm EC^*}$ γ -tagging efficiency must be very well-known.

Measurement of 54 Mn γ efficiency is combined with Geant4-simulated values.

Scale 835 keV gamma to 1460 keV (⁴⁰K), correct for dead time:

(1 µs CW): Measured ⁵⁴Mn 97.75(1)% \rightarrow ⁴⁰K 97.89(6)%

Testing Methods - 65 Zn

Test methodology for obtaining $\rho = I_{\rm EC}/I_{\rm EC^*}$ via ⁶⁵Zn, similar decay

SDD Spectra - 2.00 us CW

Resolution $198\,\mathrm{eV}$ FWHM at $8\,\mathrm{keV}$

Testing Methods - $^{65}\mathrm{Zn}$

Fit coincident & uncoincident (below) spectra simultaneously

Fit accounts for false positives and negatives Notably: < 100% MTAS efficiency, EC coincidence with MTAS background

Testing Methods - 65 Zn

- False negative correction removes unphysical CW-dependency
- Finalizing systematics

⁴⁰K: Blinding, Sensitivity

Theory and Projected KDK Sensitivity

⁴⁰K: Blinding, Sensitivity

Theory and Projected KDK Sensitivity

- $\bullet~^{40}{\rm K}$ measurement applicable to many fields: rare-event searches, geochronology, nuclear theory
- KDK is making a measurement of ⁴⁰K, along with other isotopes
- $\bullet~^{40}{\rm K}$ data unblinded (internally), systematics checks ongoing
- Stay tuned for the final value in the coming weeks

Thank you to the KDK Collaboration

N. Brewer¹, H. Davis², P.C.F. Di Stefano³, A. Fijałkowska^{1,4,5}, Z. Gai¹,
K.C. Goetz¹, R. Grzywacz⁴, J. Kostensalo⁶, P. Lechner⁷, Y. Liu¹, E. Lukosi²,
M. Mancuso⁸, D. McKinnon², C.L. Melcher², J. Ninkovic⁷, F. Petricca⁸,
B.C. Rasco¹, K.P. Rykaczewski¹, D. Stracener¹, M. Stukel³, J. Suhonen⁹,
M. Wolińska-Cichocka^{1,4,10}, I. Yavin

¹Oak Ridge National Laboratory Physics Division, Oak Ridge, TN, U.S.A
²University of Tennessee, Knoxville, TN, USA
³Queen's University, Kingston, Ontario, Canada
⁴Joint Institute for Nuclear Physics and Applications, Oak Ridge, TN, U.S.A
⁵University of Warsaw, Warsaw, Poland
⁶Natural Resources Institute Finland, Joensuu, Finland
⁷MPG Semiconductor Laboratory, Munich, Germany
⁸Max Planck Institute for Physics, Munich, Germany
⁹University of Jyvaskyla, Jyvaskyla, Finland
¹⁰Heavy Ion Laboratory UW, Warsaw, Poland

References I

 M. Stukel, B. C. Rasco, N. T. Brewer, P. C. F. Di Stefano, K. P. Rykaczewski, H. Davis, E. D. Lukosi, L. Hariasz, M. Constable, P. Davis, K. Dering, A. Fijałkowska, Z. Gai, K. C. Goetz, R. K. Grzywacz, J. Kostensalo, J. Ninkovic, P. Lechner, Y. Liu, M. Mancuso, C. L. Melcher, F. Petricca, C. Rouleau, P. Squillari, L. Stand, D. W. Stracener, J. Suhonen, M. Wolińska-Cichocka, and I. Yavin.

A novel experimental system for the kdk measurement of the $^{40}{\rm k}$ decay scheme relevant for rare event searches.

arXiv:2012.15232, 2020.

[2] Jun Chen.

Nuclear data sheets for A = 40.

Nuclear Data Sheets, 140:1–376, 2017.

[3] Josef Pradler, Balraj Singh, and Itay Yavin.

On an unverified nuclear decay and its role in the dama experiment. *Physics Letters B*, 720(4-5):399–404, 2013.

[4] Jack Carter, Ryan B Ickert, Darren F Mark, Marissa M Tremblay, Alan J Cresswell, and David CW Sanderson.

Production of 40 Ar by an overlooked mode of 40 K decay with implications for K-Ar geochronology.

Geochronology, 2(2):355-365, 2020.

[5] E. Browne and J.K. Tuli.

Nuclear Data Sheets for A = 65.

Nuclear Data Sheets, 111(9):2425–2553, September 2010.

[6] M. M. Bé, V. Chisté, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenco, R. Helmer, F. Kondev, and D. MacMahon.

Table of Radionuclides (vol. 3-A=3 to 244).

Monographie BIPM, 5, 2006.