An Implementation of Atomic Form Factors for Non-equal Masses

Nuzhat Anjum

University of Alberta

Winter Nuclear and Particle Physics Conference, 2022

Outline

Nuzhat Anjum, An Implementation of Atomic Form Factors

三日 のへの

Form Factor

Transition form factor of hydrogen like atoms have a wide variety of applications such as in situations involving the Coulomb bound states of two elementary particles.

B A B A B B A A A

Definition of Form Factor

The calculation of transition probability of bound pion to bound muon decay requires computation of discrete-discrete atomic form factors, which is just the Fourier transform of $\phi_{n_2l_2m_2}^*(\overrightarrow{r})\varphi_{n_1l_1m_1}(\overrightarrow{r})$ with respect to transferred momentum \vec{q} [2].

$$F_{n_1l_1m_1}^{n_2l_2m_2}(\overrightarrow{q}) = \int d\overrightarrow{r} \varphi_{n_2l_2m_2}^*(\overrightarrow{r}) e^{i\overrightarrow{q}\cdot\overrightarrow{r}} \varphi_{n_1l_1m_1}(\overrightarrow{r})$$

• $R_{n_1 l_1}(\overrightarrow{r})$ and $Y_{l_1 m_1}(\Omega)$ are the radial part and angular part of hydrogen like wave function and

Definition of Form Factor

The calculation of transition probability of bound pion to bound muon decay requires computation of discrete-discrete atomic form factors, which is just the Fourier transform of $\phi_{n_2l_2m_2}^*(\overrightarrow{r})\varphi_{n_1l_1m_1}(\overrightarrow{r})$ with respect to transferred momentum \vec{q} [2].

$$F_{n_1l_1m_1}^{n_2l_2m_2}(\overrightarrow{q}) = \int d\overrightarrow{r} \varphi_{n_2l_2m_2}^*(\overrightarrow{r}) e^{i\overrightarrow{q}\cdot\overrightarrow{r}} \varphi_{n_1l_1m_1}(\overrightarrow{r})$$

 $\varphi_{n_1l_1m_1}(\overrightarrow{r}) = R_{n_1l_1}(\overrightarrow{r}) Y_{l_1m_1}(\Omega)$

• $R_{n_1 l_1}(\overrightarrow{r})$ and $Y_{l_1 m_1}(\Omega)$ are the radial part and angular part of hydrogen like wave function and

글 이 이 글 이 글

Definition of Form Factor

The calculation of transition probability of bound pion to bound muon decay requires computation of discrete-discrete atomic form factors, which is just the Fourier transform of $\phi_{n_2l_2m_2}^*(\overrightarrow{r})\varphi_{n_1l_1m_1}(\overrightarrow{r})$ with respect to transferred momentum \vec{q} [2].

$$F_{n_1l_1m_1}^{n_2l_2m_2}(\overrightarrow{q}) = \int d\overrightarrow{r} \varphi_{n_2l_2m_2}^*(\overrightarrow{r}) e^{i\overrightarrow{q}\cdot\overrightarrow{r}} \varphi_{n_1l_1m_1}(\overrightarrow{r})$$

٥

$$\varphi_{n_1l_1m_1}(\overrightarrow{r}) = R_{n_1l_1}(\overrightarrow{r})Y_{l_1m_1}(\Omega)$$

• $R_{n_1 l_1}(\overrightarrow{r})$ and $Y_{l_1 m_1}(\Omega)$ are the radial part and angular part of hydrogen like wave function and

Radial Wave Function

$$R_{nl} = \frac{2}{a^{3/2}n^2} \sqrt{\frac{(n-l-1)!}{(n+l)!}} e^{-\frac{r}{an}} \left(\frac{2r}{na}\right)^l L_{n-l-1}^{2l+1} \left(\frac{2r}{na}\right)$$

- *n*, *l* are quantum numbers.
- Bohr radius $a \propto \frac{1}{mass}$.
- L_n^m is the associated Laguerre polynomials.

► < E ► < E ► E E < <</p>

Radial Wave Function

$$R_{nl} = \frac{2}{a^{3/2}n^2} \sqrt{\frac{(n-l-1)!}{(n+l)!}} e^{-\frac{r}{an}} \left(\frac{2r}{na}\right)^l L_{n-l-1}^{2l+1} \left(\frac{2r}{na}\right)$$

- n, l are quantum numbers.
- Bohr radius $a \propto \frac{1}{mass}$.
- L_n^m is the associated Laguerre polynomials.

• • = • • = • =

Radial Wave Function

$$R_{nl} = \frac{2}{a^{3/2}n^2} \sqrt{\frac{(n-l-1)!}{(n+l)!}} e^{-\frac{r}{an}} \left(\frac{2r}{na}\right)^l L_{n-l-1}^{2l+1} \left(\frac{2r}{na}\right)$$

- n, l are quantum numbers.
- Bohr radius $a \propto \frac{1}{mass}$.
- L_n^m is the associated Laguerre polynomials.

• • = • • = • =

= 200

Radial Wave Function

$$R_{nl} = \frac{2}{a^{3/2}n^2} \sqrt{\frac{(n-l-1)!}{(n+l)!}} e^{-\frac{r}{an}} \left(\frac{2r}{na}\right)^l L_{n-l-1}^{2l+1} \left(\frac{2r}{na}\right)$$

- n, l are quantum numbers.
- Bohr radius $a \propto \frac{1}{mass}$.
- L_n^m is the associated Laguerre polynomials.

Plane Wave Expansion

$$e^{i\overrightarrow{q}\cdot\overrightarrow{r}} = 4\pi\sum_{l=0}^{\infty}\sum_{m=-l}^{l}i^{l}j_{l}(qr)Y_{lm}(\Omega_{q})Y_{lm}^{*}(\Omega_{r})$$

Plugging the plane wave expansion in

$$F_{n_1l_1m_1}^{n_2l_2m_2}(\overrightarrow{q}) = \int d\overrightarrow{r} R_{n_2l_2}^*(\overrightarrow{r}) Y_{l_2m_2}(\Omega) e^{i\overrightarrow{q}\cdot\overrightarrow{r}} R_{n_1l_1}(\overrightarrow{r}) Y_{l_1m_1}(\Omega)$$

$$F_{n_1l_1m_1}^{n_2l_2m_2} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \int_0^{\infty} r^2 dr R_{n_2l_2}^*(r) R_{n_1l_1}(r) i^l j_l(qr) Y_{lm}(\Omega_q) I_{l_1l_2l}^{m_1m_2m}$$

where $I_{l_{1}l_{2}l}^{m_{1}m_{2}m} = \int d\Omega Y_{l_{2}m_{2}}^{*}(\Omega) Y_{l_{m}}^{*}(\Omega) Y_{l_{1}m_{1}}(\Omega)$

= 200

Angular Integral

 $I_{l_1 l_2 l}^{m_1 m_2 m}$ can be expressed in terms of Wigner's 3j-symbols [3]

$$egin{aligned} & I_{l_1 l_2 l}^{m_1 m_2 m} = (-1)^{m_2 + m} \sqrt{rac{(2l_1 + 1)(2l_2 + 1)(2l + 1)}{4\pi}} \left(egin{aligned} & l_1 & l_2 & l \ 0 & 0 & 0 \end{array}
ight) \ & \left(egin{aligned} & l_1 & l_2 & l \ m_1 & -m_2 & -m \end{array}
ight) \end{aligned}$$

Radial Integral

Using the radial wave function the form factor becomes

$$F_{n_{1}l_{1}m_{1}}^{n_{2}l_{2}m_{2}} = \frac{4\pi 2^{2+l_{1}+l_{2}}i^{l}}{a_{1}^{3/2}a_{2}^{3/2}n_{1}^{2}n_{2}^{2}}\sqrt{\frac{(n_{1}-l_{1}-1)!}{(n_{1}+l_{1})!}}\sqrt{\frac{(n_{2}-l_{2}-1)!}{(n_{2}+l_{2})!}}Y_{lm}(\Omega_{q})$$
$$I_{l_{1}l_{2}l}^{m_{1}m_{2}m}\sum_{l=0}^{\infty}\sum_{m=-l}^{l}\int_{0}^{\infty}r^{2}dre^{-\frac{r}{a_{1}n_{1}}}\left(\frac{r}{a_{1}n_{1}}\right)^{l_{1}}L_{n_{1}-l_{1}-1}^{2l_{1}+1}\left(\frac{2r}{a_{1}n_{1}}\right)$$
$$j_{l}(qr)e^{-\frac{r}{a_{2}n_{2}}}\left(\frac{r}{a_{2}n_{2}}\right)^{l_{2}}L_{n_{2}-l_{2}-1}^{2l_{2}+1}\left(\frac{2r}{a_{2}n_{2}}\right)$$

The integral involves the product of Bessel function and associated Laguerre polynomials.

A = A = A = A = A
 A = A
 A

Result of the Integral

The integral is calculated using mathematical result involving the product of Bessel function and associated Laguerre polynomials [1]

$$\begin{split} &\int\limits_{0}^{\infty} e^{-\delta x} J_{\nu}(\mu x) x^{\gamma} L_{n}^{\alpha}(\beta x) dx = \\ &\sum\limits_{k=0}^{n} \frac{(-\beta)^{k} \mu^{\nu} \Gamma(n+\alpha+1) \Gamma(\nu+\gamma+k+1)}{k! \Gamma(n-k+1) \Gamma(\alpha+k+1) 2^{\nu} \Gamma(\nu+1) \delta^{\nu+\gamma+k+1}} \\ &\times_{2} F_{1}\left(\frac{\nu+\gamma+k+1}{2}, \frac{\nu+\gamma+k+2}{2}; 1+\nu; -\frac{\mu^{2}}{\delta^{2}}\right) \end{split}$$

• $_2F_1$ is Gauss hypergeometric function. $L_n^m(x) = (n+m)! \sum_{k=0}^n \frac{(-1)^k}{k!(n-k)!(k+m)!} x^k$

Result of the Integral

The integral is calculated using mathematical result involving the product of Bessel function and associated Laguerre polynomials [1]

$$\begin{split} &\int\limits_{0}^{\infty} e^{-\delta x} J_{\nu}(\mu x) x^{\gamma} L_{n}^{\alpha}(\beta x) dx = \\ &\sum\limits_{k=0}^{n} \frac{(-\beta)^{k} \mu^{\nu} \Gamma(n+\alpha+1) \Gamma(\nu+\gamma+k+1)}{k! \Gamma(n-k+1) \Gamma(\alpha+k+1) 2^{\nu} \Gamma(\nu+1) \delta^{\nu+\gamma+k+1}} \\ &\times_{2} F_{1}\left(\frac{\nu+\gamma+k+1}{2}, \frac{\nu+\gamma+k+2}{2}; 1+\nu; -\frac{\mu^{2}}{\delta^{2}}\right) \end{split}$$

• $_2F_1$ is Gauss hypergeometric function. $L_n^m(x) = (n+m)! \sum_{k=0}^n \frac{(-1)^k}{k!(n-k)!(k+m)!} x^k$

Final Formula for Form Factor

$$\begin{split} F_{n_{1}l_{1}m_{1}}^{n_{2}l_{2}m_{2}} &= \frac{(-1)^{m_{2}+m}2^{2+l_{1}+l_{2}}}{\left(\frac{a_{2}}{a_{1}}\right)^{3/2+l_{2}}n_{1}^{2+l_{1}}n_{2}^{2+l_{2}}} \delta_{m0}\sqrt{\frac{\pi}{2q}}\sqrt{\frac{(2l_{1}+1)(2l_{2}+1)(n_{1}+l_{1})!(n_{2}+l_{2})!(n_{1}-l_{1}-1)!}{(n_{2}-l_{2}-1)!}} \\ &\sum_{l=|l_{1}-l_{2}|}^{l_{1}+l_{2}}\frac{i^{l}q^{\nu}(2l+1)}{2^{\nu}\Gamma(\nu+1)}\left(\begin{array}{cc}l_{1}&l_{2}&l\\0&0&0\end{array}\right)\left(\begin{array}{cc}l_{1}&l_{2}&l\\m_{1}&-m_{2}&-m\end{array}\right) \\ &\sum_{k=0}^{n_{2}-l_{2}-1}\frac{(-2)^{k}}{\left(\frac{n_{2}a_{2}}{a_{1}}\right)^{k}k!(2l_{2}+k+1)!} \\ &\sum_{k_{1}=0}^{n}\frac{(-\beta)^{k_{1}}\Gamma(\nu+\gamma+k_{1}+1)}{k_{1}!\Gamma(n-k_{1}+1)\Gamma(\alpha+k_{1}+1)\delta^{\nu+\gamma+k_{1}+1}} \\ &\times_{2}F_{1}\left(\frac{\nu+\gamma+k_{1}+1}{2},\frac{\nu+\gamma+k_{1}+2}{2};1+\nu;-\frac{q^{2}}{\delta^{2}}\right) \end{split}$$
 with

with

$$\begin{split} \gamma &= l_1 + l_2 + k + \frac{3}{2} & \delta &= \frac{n_2 \frac{a_2}{a_1} + n_1}{\frac{a_2}{a_1} n_1 n_2} \\ \nu &= l + \frac{1}{2} & \beta &= \frac{2}{n_1} \\ n &= n_1 - l_1 - 1 & \alpha &= 2l_1 + 1 \end{split}$$

Nuzhat Anjum, An Implementation of Atomic Form Factors

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の Q @

Testing and Implementation

- The numerical integration agrees with the form factor formula.
- This formula can be used in any standard computer language.
- A Julia package is created by using this formula.

Testing and Implementation

- The numerical integration agrees with the form factor formula.
- This formula can be used in any standard computer language.
- A Julia package is created by using this formula.

Testing and Implementation

- The numerical integration agrees with the form factor formula.
- This formula can be used in any standard computer language.
- A Julia package is created by using this formula.

A = A = A = A = A
 A = A
 A

Testing and Implementation

- The numerical integration agrees with the form factor formula.
- This formula can be used in any standard computer language.
- A Julia package is created by using this formula.

■ ▲ ■ ▲ ■ ■ ■ ● ● ● ●

Illustration

The following figure is for $F_{4,2,0}^{5,0,0}(q)$, we can see that the discrete-discrete atomic form factors evaluated at zero transferred momentum should be 0 or 1.

R. S. Alassar, H. A. Mavromatis, and S. A. Sofianos. A new integral involving the product of bessel functions and associated laguerre polynomials.

Acta Applicandae Mathematicae, 100(3):263–267, dec 2007.

D.P. Dewangan.

Asymptotic methods for Rydberg transitions. *Physics Reports*, 511(1):1–142, 2012.

Landau, Lev Davidovich and Lifshitz, Evgenii Mikhailovich.

Quantum mechanics: non-relativistic theory, volume 3. Elsevier, 2013.

글 이 이 글 이 글