



# Accelerator Projects in Nuclear and Particle Physics A Canadian Perspective Tobias Junginger

### **UVic/TRIUMF Accelerator Research**

- UVic is the lead University of the ARIEL project with PI D. Karlen
- Currently 14 UVic graduate students in accelerator physics at TRIUMF
- One graduate lecture course taught by the adjunct faculty each year at TRIUMF and broadcasted nationwide
- Undergraduate lecture course, graduate + undergraduate projects offered at UVic

#### **RESEARCH FOCUS at TRIUMF**

- Beam physics and instrumentation (R. Baartman, O. Kester, T. Planche)
- Superconducting RF (R. Laxdal)
- Ion Sources and Targets for secondary particle production (A. Gottberg, O. Kester) Projects at UVic
- Cryocooler based fundamental SRF studies (NSERC funded)
- Surface and Materiel Science Studies at the Electron Microscopy Facility (A. Blackburn)
- Application of SRF technology to quantum computing (R. de Sousa)
- Beam Dynamics studies for SuperKEKB (M. Roney)

Scope/Disclaimer: This talk focuses on fundamental SRF and beam physics research with UVic involvement.



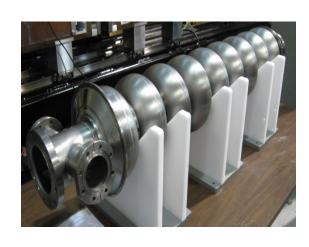
T. Junginger – Accelerator Projects in Nuclear and Particle Physics – WNPPC 2022

### Content

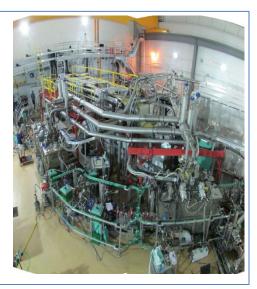
- Nuclear Physics Projects at TRIUMF
  - ISAC facility
    - Increase experiment time Model based beam tuning
    - Reaching higher charge states Two frequency heating of charge state booster
    - ISAC-II energy upgrade
    - ISAC Storage Ring
  - ARIEL e-linac
    - Status and future applications
- Fundamental SRF research
  - Coaxial cavity research
  - High accelerating gradient research for linacs like ILC BetaNMR studies
- International Particle Physics Projects
  - Cryomodule development for international projects
  - Polarized Beams for SUPERKEK-B
- Non subatomic physics accelerator projects with UVic and TRIUMF involvement

### **SRF Accelerators at TRIUMF**

40MV ISAC-II SRF heavy ion linac @ 106MHz - operational since 2006




#### Bare cavities


#### Cryomodules

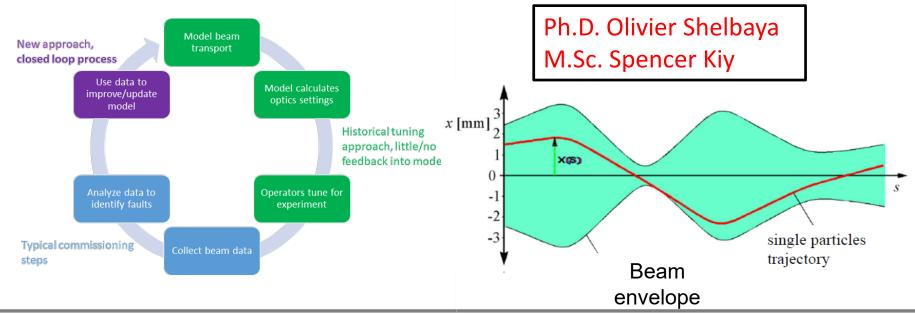
#### Accelerators

30MV ARIEL SRF 10mA electron linac @ 1.3GHz – first beam 2014








### Content

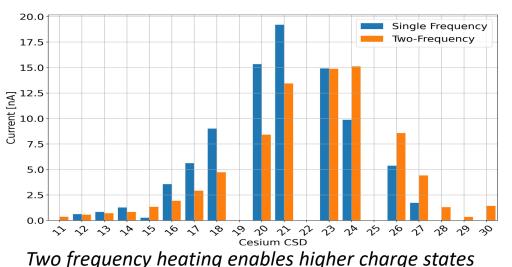
- Nuclear Physics Projects at TRIUMF
  - ISAC facility
    - Increase experiment time Model based beam tuning
    - Reaching higher charge states Two frequency heating of charge state booster
    - ISAC-II energy upgrade
    - ISAC Storage Ring
  - ARIEL e-linac
    - Status and future applications
- Fundamental SRF research
  - Coaxial cavity research
  - High accelerating gradient research for linacs like ILC BetaNMR studies
- International Particle Physics Projects
  - Cryomodule development for international projects
  - Polarized Beams for SUPERKEK-B

### Non subatomic physics accelerator projects with UVic and TRIUMF involvement

# ISAC- Model based beam tuning

- Using beam physics models (usually used for design of accelerators) during beam operation
- Models rely on a code developed at TRIUMF (Rick Baartman) that describes the beam envelope throughout the entire accelerator instead of individuals particles
- Enables improved automation of various tuning processes




### ISAC - Optimization of the Charge State Booster (CSB)

**Fundamental problem:** Beam properties provided by the particle source cannot be improved in the accelerator.

**Research Goal:** Improve beam quality, intensity and charge state of post-accelerated beams in the ISAC charge state booster

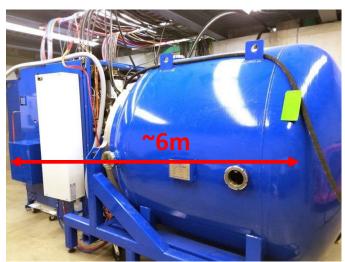
- Systematic investigation and optimization of the charge state booster extraction system
- Implement two-frequency heating of the ECRIS CSB

PhD student Joseph Adegun received the student poster price at the 2021 International Conference on ion sources (ICIS) for this work



<image>

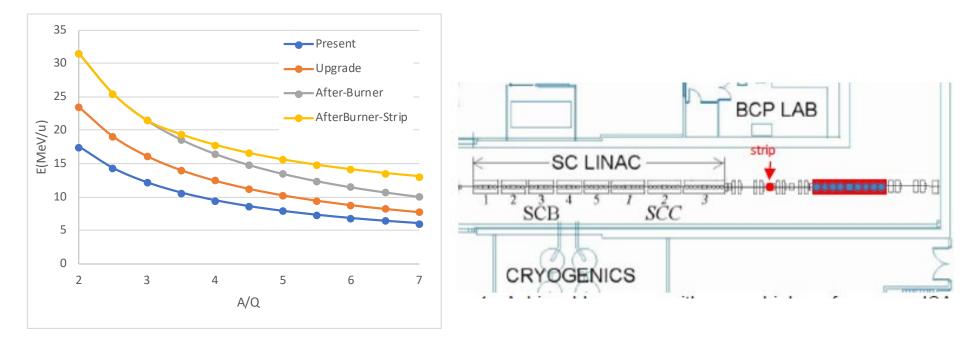
Joseph Adegun in front of the CSB


#### ISAC - Storage ring for neutron captures on radioactive nuclei

**Motivation:** Direct measurement of neutron capture cross sections of short-lived radionuclides down to seconds of half-lives.

**Requirement:** ISOL Facility + Storage Ring + Neutron "Target"

- Several proposal exist no facility world-wide
- Others have considered using a reactor (safety issues) or a spallation source (costly) as targets We consider using a commercial neutron generator as target
   Timeline: Feasibility studies towards TDR in 2025 – First experiments in 2031






Alectryon 300T from Phoenix LLC: highest output gaseous target DT neutron generator on the market

# ISAC-II - Energy Upgrade

- ISAC-II designed for 40MV but presently delivering 34 MV
- New SRF cavity processing infrastructure will permit ISAC-II performance upgrade to >=44 MV
- Afterburner cryomodule using state-of-the-art fabrication and processing would add 16 MV to result in 60 MV total
- Would restore world lead in RIB post-accelerator performance back to ISAC-II



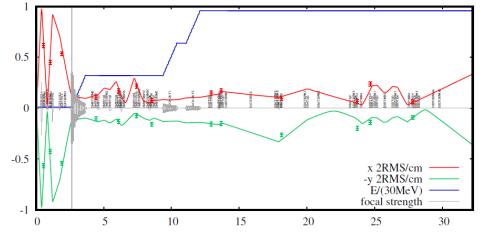
### Content

### Nuclear Physics Projects at TRIUMF

- ISAC facility
  - Increase experiment time Model based beam tuning
  - Reaching higher charge states Two frequency heating of charge state booster
  - ISAC-II energy upgrade
  - ISAC Storage Ring
- ARIEL e-linac
  - Status and future applications

### Fundamental SRF research

- Coaxial cavity research
- High accelerating gradient research for linacs like ILC BetaNMR studies
- International Particle Physics Projects
  - Cryomodule development for international projects
  - Polarized Beams for SUPERKEK-B


### Non subatomic physics accelerator projects with UVic and TRIUMF involvement

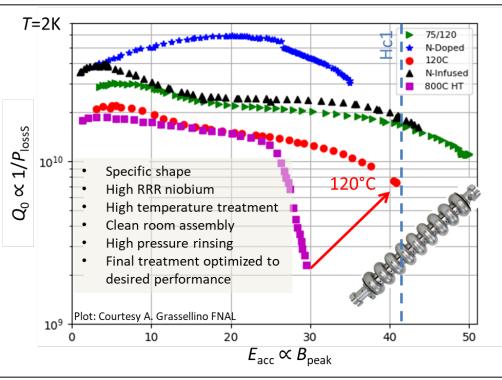
### **ARIEL e-linac**

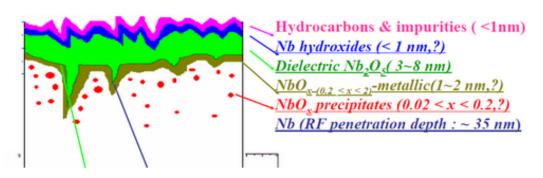
Figures of merit in a linac – Energy, Beam Current, Reliability, Operability, and Beam Quality

- **Current and energy**: Reached 10 kW at 30MeV in September 2021 as required for first ARIEL science run
- **Operability**: Now relying entirely on the beam optics model to determine tunes
- Focus for 2022 is to increase **beam quality**, make linac reliable and **easily operable** 
  - Demonstrate energy stability better than 0.1% (2RMS) now at 0.3%
  - Hand over from experts to operators
- Before the ARIEL electron target is ready to take beam science focus is on
  - FLASH-MRT Reducing side effects in radiotherapy by a combination of two novel treatment techniques, the ultra-fast (FLASH) radiotherapy with spatially fractionated microbeam therapy (MRT) – First beam delivered to experiment this week
  - DarkLight project Electron scattering experiment to search for particles beyond the standard model – Target chamber installed December 2021

| E-LINAC   |            |
|-----------|------------|
| BEAM      | ON         |
| PATH      | EHD : DUMP |
| PEAK CUR. | 498 μΑ     |
| ENERGY    | 30.2 MeV   |
| POWER     | 10.0 kW    |



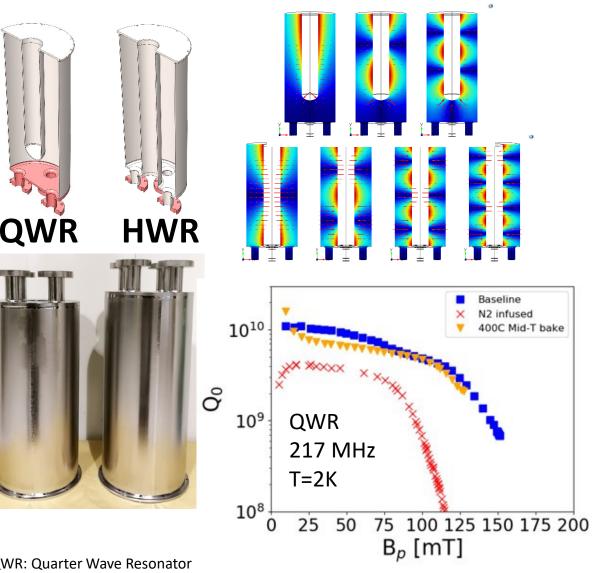

### Content


- Nuclear Physics Projects at TRIUMF
  - ISAC facility
    - Increase experiment time Model based beam tuning
    - Reaching higher charge states Two frequency heating of charge state booster
    - ISAC-II energy upgrade
    - ISAC Storage Ring
  - ARIEL e-linac
    - Status and future applications
- Fundamental SRF research
  - Coaxial cavity research
  - High accelerating gradient research for linacs like ILC BetaNMR studies
- International Particle Physics Projects
  - Cryomodule development for international projects
  - Polarized Beams for SUPERKEK-B

#### Non subatomic physics accelerator projects with UVic and TRIUMF involvement

### **Motivation for fundamental SRF research**

- SRF is highly efficient but complex technology
- Supercurrents only flow within a few tens of nanometres
  - Performance is very sensitive to near surface material properties which can be engineered by heat treatments in vacuum or low pressure gas atmosphere
- Maximum quality factor and accelerating gradient depend on surface treatment but also on RF frequency, cavity shape (surface field configuration), ambient magnetic flux in a correlated and not fully understood way

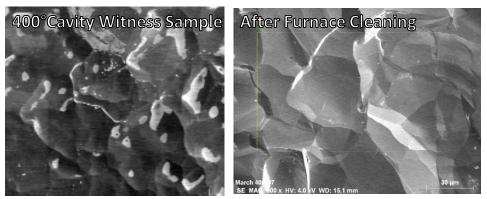




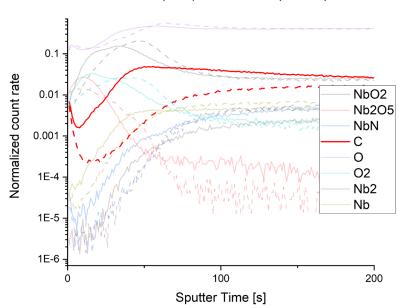

# **Coaxial Research Cavities at TRIUMF**

- Most SRF research done on high frequency, high beta, elliptical cavities.
- Ion accelerators need low frequency, low beta coaxial cavities
- TRIUMF has dedicated coaxial cavities for fundamental SRF research
  - Multiple modes (=multiple frequencies)
- Two new baking procedures tried for the first time on coaxial cavities
  - Encouraging results but below expectation (P. Kolb et al. SRF2021)

P. Kolb et al. Phys. Rev. Accel. Beams 23, 122001




QWR: Quarter Wave Resonator HWR: Half Wave Resonator


# **Coaxial Research Cavities at TRIUMF**

#### Two new baking procedures tried for the first time on coaxial cavities

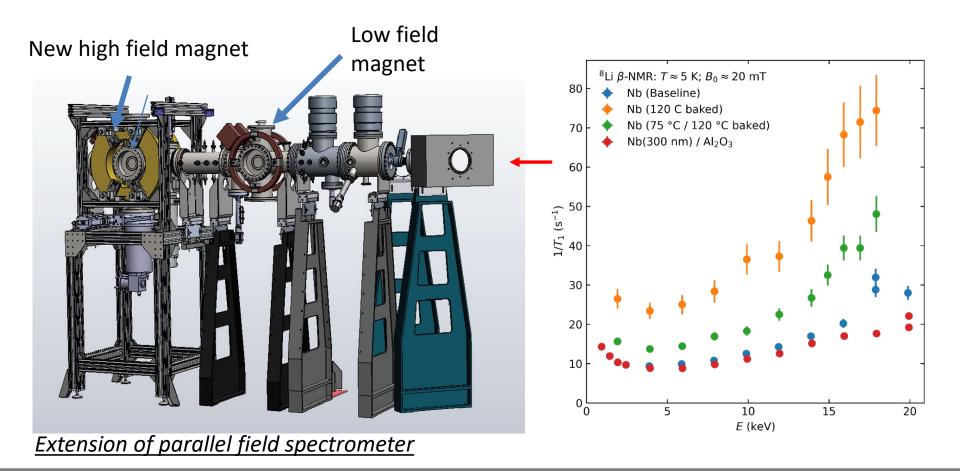
- Unlike for traditional procedures there is no material removal (chemistry) after baking. Very clean environments required
- Material analysis with SEM/EDX shows signs of carbon contamination (Honors thesis project D. Hedji)
- SIMS depth profile shows that carbon contamination is most pronounced in relevant near surface region
- Furnace cleaning: Wiping down surfaces with methanol, cleaning burn-off at 100°C reduced carbon content



#### SEM image before and after furnace cleaning



SEM: scanning electron microscopy, EDX: energy dispersive X-Ray spectroscopy, SIMS: Secondary ion mass spectroscopy


400C/3h (solid) and Baseline (dashed)

### $\beta$ -NMR + SRF @ TRIUMF



beta-NMR can probe magnetic fields with nanometric depth-resolution

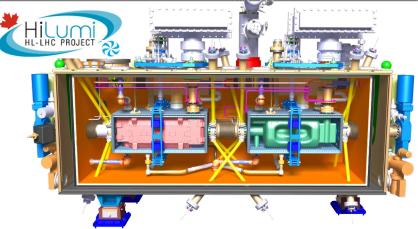
- With β-SRF we have added facility to test samples in high parallel field (200 mT). Successfully commissioned Summer 2021 and now provides world-wide unique capability
- Method is sensitive to changes by surface treatments (E. Thoeng et al SRF2021)



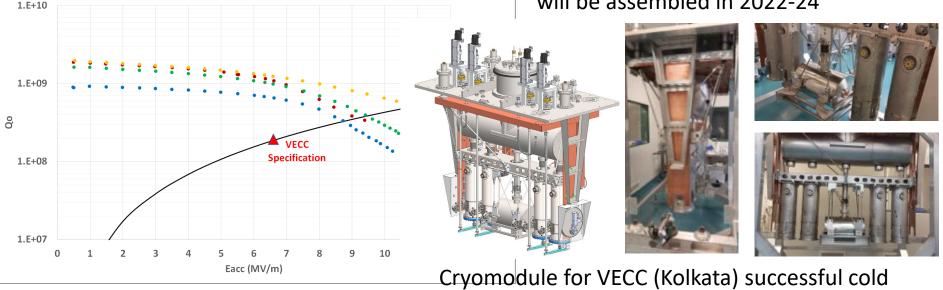
**%TRIUMF** 

### Content

- Nuclear Physics Projects at TRIUMF
  - ISAC facility
    - Increase experiment time Model based beam tuning
    - Reaching higher charge states Two frequency heating of charge state booster
    - ISAC-II energy upgrade
    - ISAC Storage Ring
  - ARIEL e-linac
    - Status and future applications
- Fundamental SRF research
  - High accelerating gradient research for linacs like ILC BetaNMR studies
  - Coaxial cavity research
- International Particle Physics Projects
  - Cryomodule development for international projects
  - Polarized Beams for SUPERKEK-B


#### Non subatomic physics accelerator projects with UVic and TRIUMF involvement

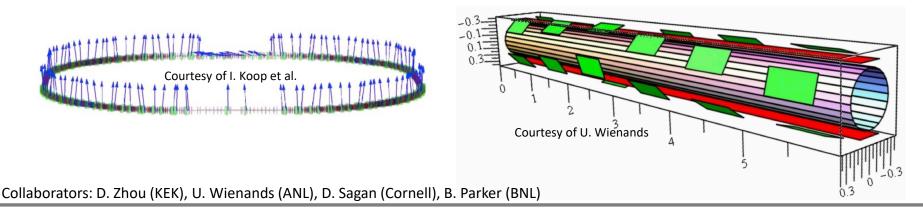
### 20 year vision - What will TRIUMF look like?


The major revolution will come from the expansion of TRIUMF outside of its physical boundaries, allowing us to play a key role in the forthcoming knowledge-based economy as the owner of Canada's accelerator-related expertise.

## **TRIUMF Cryomodule Development**

 TRIUMF SRF group produces cryomodules for the in-house linacs at ISAC-II and ARIEL as well as for external projects




Five HiLumi LHC crab cavity cryomodules will be assembled in 2022-24

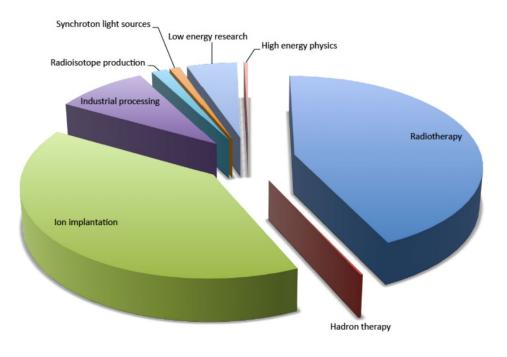


Cryomodule for VECC (Kolkata) successful cold test in Nov. 2021 with delivery in early 2022.

# **Polarized Beams for SuperKEKB**

- Polarized electron beams provide precise measurements of electro-weak parameters in the process  $e^+e^- \rightarrow f\overline{f}$ 
  - Requires longitudinal polarization at the Intersection Point
- Space constraints in the ring require a combined function magnet for spin rotation and steering
  - U. Wienands proposed solenoid-dipole combined function magnets on both sides of the Intersection Point with 6 Skew-quadrupoles on top of each rotator magnet section to compensate for x-y coupling
- MSc thesis Yuhao Peng Detailed study in BMad of the full SuperKEKB lattice including combined function magnet spin rotator. *Graduated Dec 2021*



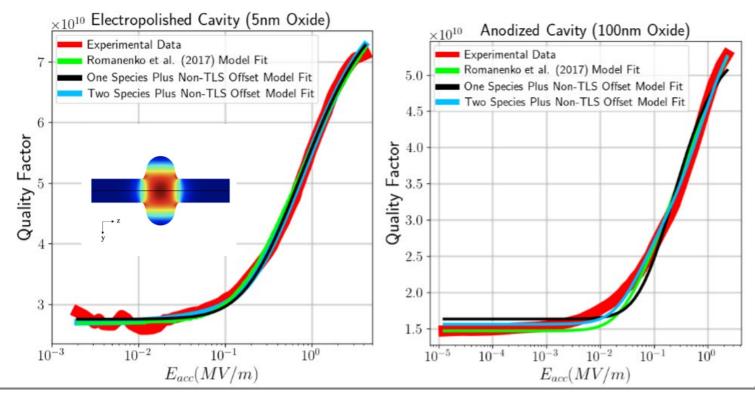

### Content

- Nuclear Physics Projects at TRIUMF
  - ISAC facility
    - Increase experiment time Model based beam tuning
    - Reaching higher charge states Two frequency heating of charge state booster
    - ISAC-II energy upgrade
    - ISAC Storage Ring
  - ARIEL e-linac
    - Status and future applications
- Fundamental SRF research
  - High accelerating gradient research for linacs like ILC BetaNMR studies
  - Coaxial cavity research
- International Particle Physics Projects
  - Cryomodule development for international projects
  - Polarized Beams for SUPERKEK-B

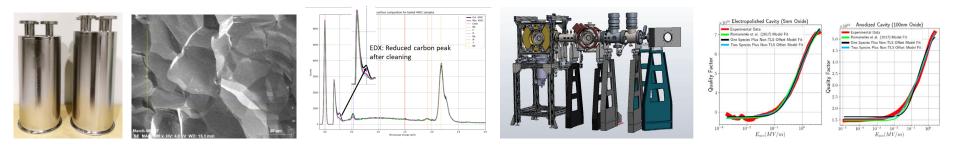
### Non subatomic physics accelerator projects with UVic and TRIUMF involvement

### Accelerators beyond subatomic research

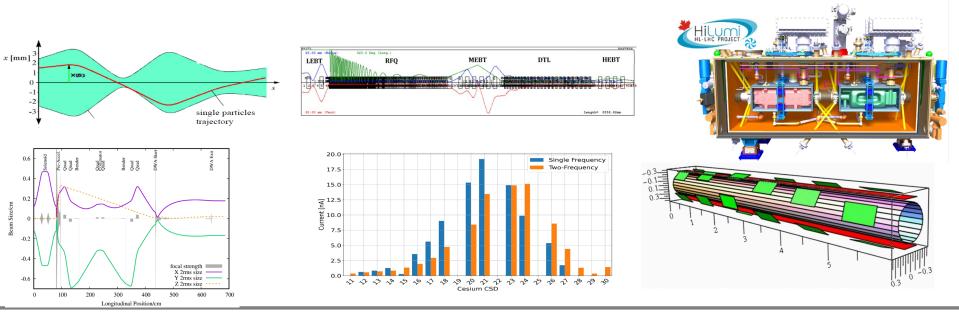
# Most accelerators of the about 30.000 accelerators world-wide are not built for subatomic physics research




National Research Council: Nuclear Physics: Exploring the Heart of Matter Washington DC (2012) Non subatomic physics accelerator physics projects with UVic student involvement


- P. Jung Cancer treatment with a dielectric wall accelerator
- A. Paul (D-Pace) Creating He<sup>-</sup> using H<sup>-</sup> ion source for ion implantation
- M. Abbaslou Development of a compact Canadian neutron source
- N. Gorgichuk SRF technology for quantum computing application

# **SRF for Quantum Computing**


- Main mechanism for quantum decoherence in current quantum hardware are two level systems in amorphous oxides
- SRF cavites can increase coherence times and be used as a testbed for theoretical models
- Low field data is available in the literature but published analysis does not take into account the variation of the electric field on the cavity surface.
- We propose a new model for quantum decoherence based on the separation of oxide and interface losses

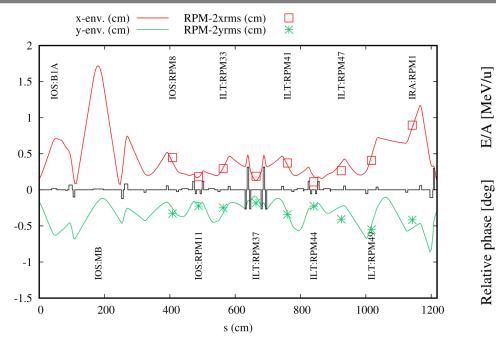


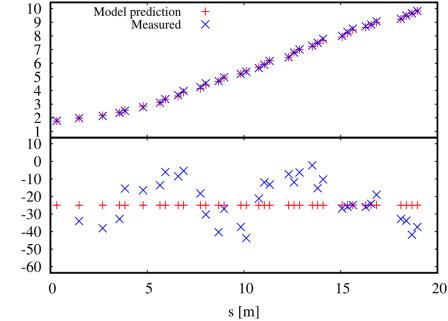
### Thank you for your attention



# TRIUMF with UVic as key partner is the center for accelerator research in Canada




2/18/2022

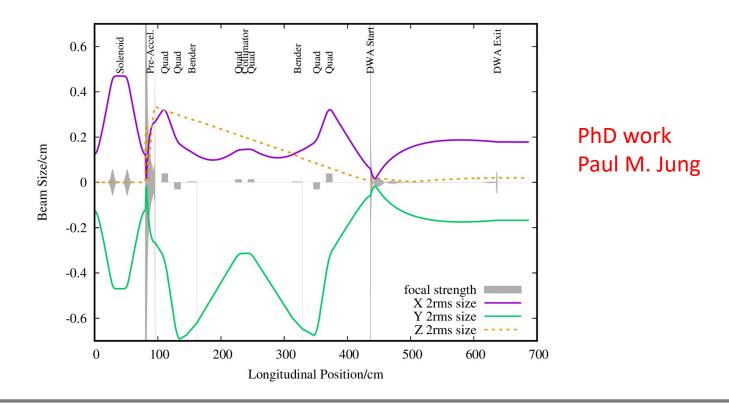

T. Junginger – Accelerator Projects in Nuclear and Particle Physics – WNPPC 2022

### **Backup slides**

### **ISAC - Model based beam tuning**

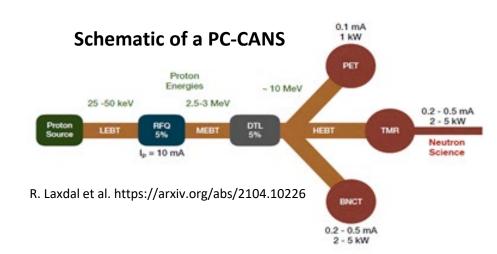
E/A [MeV/u]

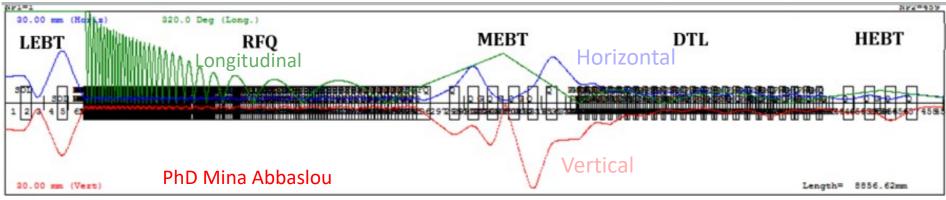





- 7Li from off-line ion source (OLIS) to the ISAC RFQ, simulated envelope vs measured beam size at profile monitors.
- Profile monitor data was used in a transoptr optimization to fit the initial beam conditions (O. Shelbaya).
- Comparison of model calculated tune for the ISAC-II heavy ion linac to observations.
- Successfully delivered beam to an experiment (IRIS S1834) with model-set cavity phases for the first time.

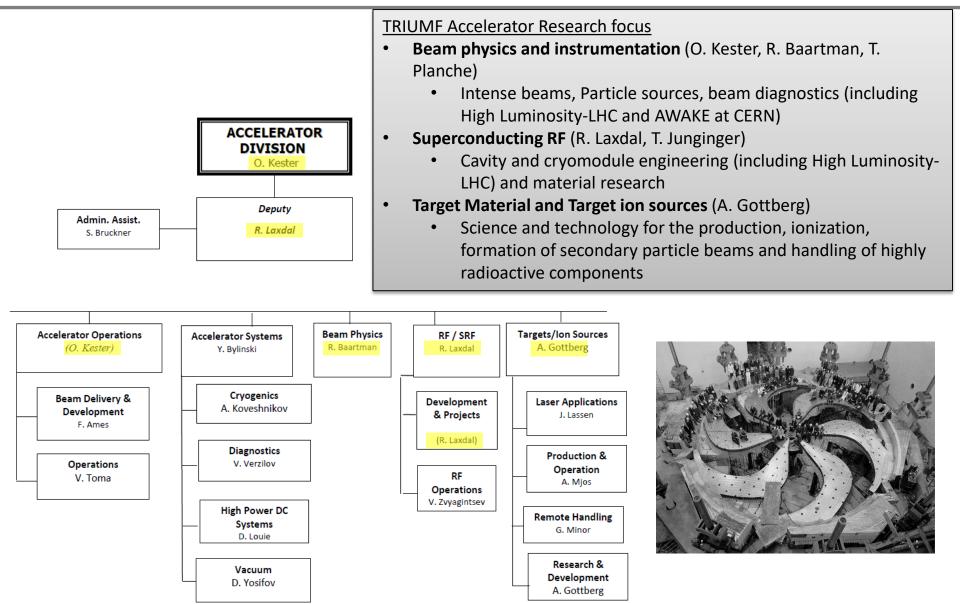
### **Backup - Dielectric Wall Accelerator Design**


A dielectric wall accelerator is a type of induction accelerator that can provide a technical solution for a compact variable energy accelerator


- Initially patented in 2001 but only recent developments in high gradient insulators and dielectrics promise technical feasibility
- Proposed by McGill Medical Physics Unit for proton therapy
- TRIUMF provided design in TRANSOPTR (R. Baartman's code) with custom subroutine.

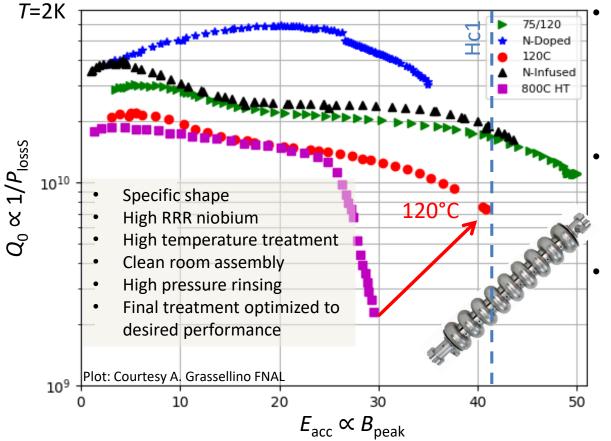


#### **Baclup - Compact Accelerator-based Neutron Source for Canada**


- Compact Accelerator-based Neutron
  Sources (CANS) can provide intense neutrons with a capital cost significantly lower than a spallation source
- TRIUMF is designing a Prototype
  Canadian CANS (PC-CANS) to be located at the University of Windsor
- PC-CANS is based on a high intensity linear proton accelerator (RFQ+DTL) and multiple target stations for science and medical purposes
- **Status**: Conceptual design studies towards a CFI funding proposal.






#### End to end simulation of p-LINAC in Trace-3D code

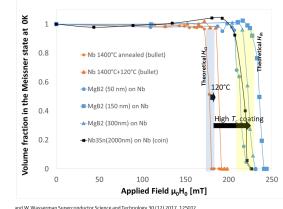
### **UVic adjunct faculty in Accelerator Division**



# **TRIUMF** State of the art Nb cavities



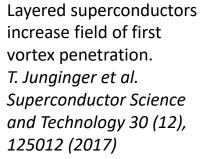



#### Two challenges

- 1. Higher accelerating gradients
- 2. Push the performance of non elliptical cavities

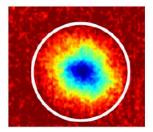
- Nb is reaching fundamental limits in quality factor and accelerating gradient.
  - Some cavities reach fields exceeding  $H_{c1}$
- Unfortunately so far we can have only one or the other and only for elliptical niobium cavities.
- For performance beyond the state of the art new materials need to considered. However all alternative materials perform weaker than Nb up to know

# **SRF** sample studies


- Sample studies are done to optimize cavity treatments but also as predictive tools for SRF performance
  - e.g. field of first vortex penetration is indicative of maximum achievable accelerating gradient
- We use a wide variety of local and external methods including
  - SEM/EDX, TEM (UVic), SIMS (UWO)
  - muSR (TRIUMF, PSI), betaNMR (TRIUMF)
  - Neutron tomography (HZB)
  - Vibrating sample magnetometry (ISIS, UK; to be developed at UVic with NSERC funding)



Featured article


Critical fields of Nb<sub>3</sub>Sn prepared for superconducting cavities S Keckert, T Junginger, T Buck, D Hall, P Kolb, O Kugeler, R Laxdal, M Liepe, S Posen, T Prokscha, Z Salman, A Suter and J Knobloch





Nb3Sn cavities can be operated in a metastable state above Hc1. Current limitations are not intrinsic. *S. Keckert, T. Junginger* 

et al. Superconductor Science and Technology 32 (7), 075004 (2019)

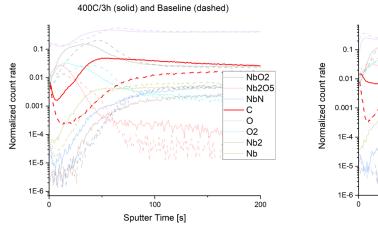


Flux trapping depends on surface treatments and can be visualized with polarized neutron tomography. *W. Treimer, T. Junginger, O. Kugeler Applied Sciences 11 (14), 6308 (2021)* 

### **TRIUMF** Beyond Nb - Critical Fields of Nb<sub>3</sub>Sn

- Results from Cornell and FNAL show that Nb<sub>3</sub>Sn 1.3 GHz cavities are reaching up 22.5 MV/m (95 mT) to
  - Quality factors at 4.2 K can be as high as for Nb at 2 K
- Measurements from both bulk  $\mu$ SR (TRIUMF) and LE- $\mu$ SR (PSI), as well as RF measurements with a specialized sample test cavity to determine the DC and RF critical fields of Nb<sub>3</sub>Sn prepared for SRF application
  - Potential for high E<sub>acc</sub> still needs to be demonstrated 4.4 K 10<sup>11</sup> 200  $H_{a}$  (from LE  $\mu$ SR)  $H_{sh}$  (from LE  $\mu$ SR)  $H_{c1}$  (from LE  $\mu$ SR) 150 QPR  $H_{vp,RF}$  (with fit)  $\mu {\rm SR} ~{\rm H}_{\rm vp,DC}$  $\mu_0 H (mT)$ တိ 10<sup>10</sup> 100 HH: Cornell Cavity LTE1-6  $\mathbf{\nabla}$ 50 Cornell Cavity ERL1-4 Fermilab CBMM-D Coating 2 Fermilab Cavity TE1ACC001 Fermilab CBMM-D Coating 3 0 10<sup>9</sup> 0.2 0.8 0.6 0.4 20 5 10 15 25 0  $1-(T/18.5 \text{ K})^2$

S Keckert, T Junginger, T Buck, D Hall, P Kolb, O Kugeler, R Laxdal, M Liepe, S Posen, T Prokscha, Z Salman, A Suter and J Knobloch, "Critical fields of Nb3Sn prepared for superconducting cavities", SUST, Volume 32 Number 7 July 2019


•





# SIMS + SEM sample study

- EDX generally only gives the elemental composition for a fixed depth
- Secondary ion mass spectroscopy (SIMS) can provide depth can provide depth resolved elemental composition
- Most SIMS traces are very similar, except Carbon.



Witness samples for baseline test and 400°C treatment

Witness samples for N2 Infusion compared with a sample from Fermilab (High performing)

100

Sputter time [s]

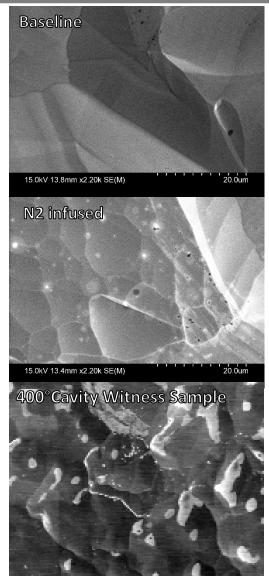
N2 infused TRIUMF (solid) vs FNAL (dashed)

NbO2

Nb2O5

NbN

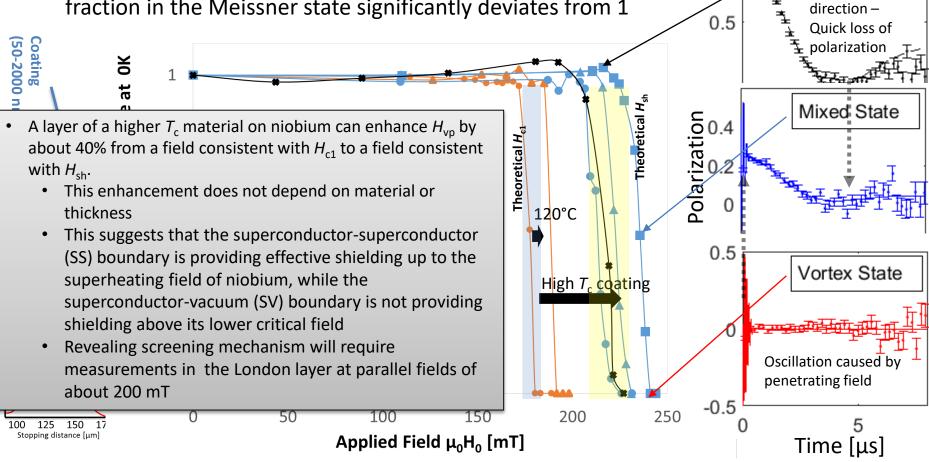
С


0

02

Nb2

Nb


200



#### SIMS analysis performed at U Western Ontario

### μSR - Field of first flux entry measurements

- Nb<sub>3</sub>Sn and MgB<sub>2</sub> with 50-2000 nm thickness on niobium
- Muons implanted 130 μm in the bulk
- Field of first vortex penetration H<sub>vp</sub> is when the volume fraction in the Meissner state significantly deviates from 1



T. Junginger, R.E Laxdal and W.Wasserman Superconductor Science and Technology 30 (12) 2017, 125012

Meissner State

Arbitrary field