Nucleosynthesis and neutrinos in explosive astrophysical events

Nicole Vassh TRIUMF Theory Group Winter Nuclear & Particle Physics Conference, Live from Vancouver, knowing exactly what we are missing in Banff :/ February 16, 2022

126

-

The solar composition can be decomposed into many processes —> multiple nucleosynthesis sites enriched the solar system

Graph

Lodders 10

The Origin of the Solar System Elements

1 H		big	bang	fusion			cosi	mic ray	/ fissio	n							2 He
Li	4 Be	r-process exp						ploding massive stars 💆				5 8	60	7 N	® 0	9 F	10 Ne
11 Na	12 Mg	dying low mass stars					exploding white dwarfs 👩					13 Al	14 Si	15 P	18 S	17 CI	18 Ar
19 K	20 Ca	21 Se	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	Very radioactive isotopes; nothing left from stars								
c created www.ast	d by Jer ronomy	nnifer Jo y.ohio-s	ohnson state.ed	u/~jaj/r	nucleo/			Astronomical Image Lanthanides ESA/NASA/AASNova						iage (Nova	redit		
									tini	des							

The solar composition can be decomposed into many processes —> multiple nucleosynthesis sites enriched the solar system

Lodders 10

* i-process talk by Falk in this session The solar composition can be decomposed into many processes —> multiple nucleosynthesis sites enriched the solar system

Lodders 10

* i-process talk by Falk in this session

Supernovae as the *r*-process source? Simulations and neutrino-driven winds (NDWs)

Neutrinos set the neutron to proton ratio

$$Y_e = \frac{n_p}{n_p + n_n}$$

via weak interactions

 $\nu_e + n \rightarrow p + e^ \bar{\nu}_e + p \rightarrow n + e^+$

and the influence of these reactions depends on the neutrino luminosities and average energies

Woosley&Janka 06; see also Panov&Janka 08

Supernovae as the *r*-process source? Simulations and neutrino-driven winds (NDWs)

Neutrinos set the neutron to proton ratio

$$Y_e = \frac{n_p}{n_p + n_n}$$

via weak interactions

 $\nu_e + n \rightarrow p + e^ \bar{\nu}_e + p \rightarrow n + e^+$

and the influence of these reactions depends on the neutrino luminosities and average energies

Woosley&Janka 06; see also Panov&Janka 08 Conditions which synthesize A>130 are not found by most modern core-collapse SNe simulations (e.g. Arcones+07, Wanajo+09, Fischer+10, Hüdepohl+10)

In such events other processes such as (α,n) and νp process could reach up to A~100 (e.g. Pruet+06, Fröhlich+06, Bliss+18)

Recent simulations find some cases develop NDWs but not standard feature for successful explosions

All exploding 15 M_{\odot} models

Witt+21

Some candidate sites for *r*-process element production

Collapsar disk winds

Magneto-rotationally driven (MHD) supernovae

Winteler+12; see also Mosta+17, Reichert+21

Neutron star mergers

Post-merger

Siegel+18; see also McLaughlin&Surman 05, Miller+19

Some candidate sites for *r*-process element production

Collapsar disk winds

Magneto-rotationally driven (MHD) supernovae

Winteler+12; see also Mosta+17, Reichert+21

Neutron star mergers

GW170817 & AT2017gfo: Binary neutron star merger

Gravitational wave signal

Over ~70 observing teams (~1/3 of the worldwide astronomical community) followed up on the merger event!

Lanthanide and/or actinide mass fraction \uparrow , opacity \uparrow , longer duration kilonova light curve shifted toward infrared

6

GW170817 & AT2017gfo: Binary neutron star merger

Gravitational wave signal

The first ever confirmation that neutron star mergers make at least some heavy elements! But...

- How representative is this one NSM event?
- Do mergers explain the *r*-process enrichment of the Solar System and the Milky Way?
- Do merger make elements heavier than lanthanides such as gold and uranium?

r-process outcomes depend on nuclear physics

8

Movie by Vassh

Theory developments:

Structure theory (masses, deformation, level densities...), reaction theory (capture cross sections...), fission yields and rates, and β -decay rates....

Modeling masses all the way to the dripline

Spotlight on the impact of nuclear masses and statistical methods

Mass Number (A)

Spotlight on the impact of nuclear masses and statistical methods

Spotlight on the impact of nuclear masses and statistical methods

Cold = photodissociation falls out early

M_{DZ} [MeV]

Ι Σ

Actinides in mergers? Spotlight on nuclear fission in astrophysics

13

Actinides in mergers? Spotlight on nuclear fission in astrophysics

Zhu+18 (including Vassh)(ApJ Letters)

The last *r*-process event in our solar system

Only 4 radioactive isotopes in meteorites linked to *r* process with $T_{1/2} < 1$ Gyr:

The last *r*-process event in our solar system

Côté+21 (including Vassh) (Science)

Impact of neutrino physics treatment in *r*-process sites

Impact of neutrino physics treatment in *r*-process sites

Era of diverse observables and multi-messenger observations

- Our Sun and meteorites are key informants on Solar System element origins
- Stellar abundances of stars in our Milky Way and beyond address the robustness of nucleosynthesis processes
- GW170817 the first observed multi-messenger binary neutron star merger: LIGO begins to provide NSM rates
- Electromagnetic follow-up: AT2017gfo kilonova light curve implied at least lanthanide elements produced
- Neutrinos and light curve seen for multi-messenger event SN1987A and we have bigger and better detectors now!

Do binary NS mergers make enough heavy elements?

Science goals

- Investigate the origins of the heaviest elements
- Probe the properties of exotic, unstable nuclei
- Motivate and support local and international nuclear physics campaigns at ARIEL and FRIB
- Capitalize on statistical methods and machine learning techniques for nuclear astrophysics problems
- Study the nature of the neutrino and its role in shaping element production at explosive sites

Interested? nvassh@triumf.ca

