Helmholtz Anaytics Framework (HAF)

Markus Götz, KIT TRIUMF Data Science and Quantum Computing Workshop Vancouver June, 28th 2018

HELMHOLTZ Analytics Framework

Concept

- Helmholtz incubator: Scientific Big Data Analysis
- Co-design approach (i.e. domain scientists + data analysts)

Funding

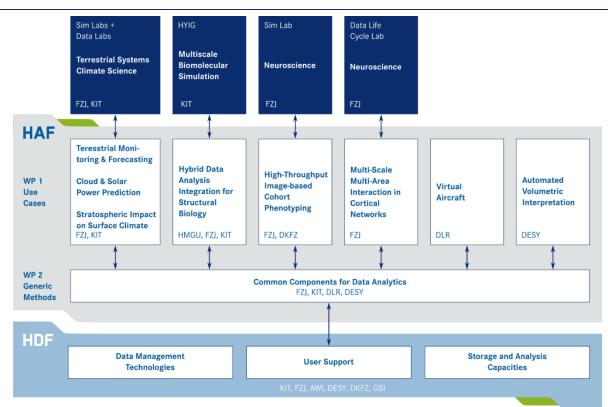
- ~6m Euro over three years
- 23 FTEs, 2/3 domain sciences, 1/3 generic methods

Mission


- 1. Data analysis methods exchange network and implementation
- Software for large-scale analysis
- Closer collaboration in Helmholtz

Project Partners

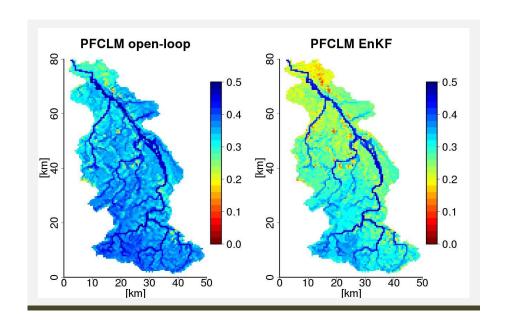
- Deutsches Elektronen Synchrotron (DESY)
- Deutsches Zentrum f
 ür Luft- und Raumfahrt (DLR)
- Deutschen Zentrum f
 ür Krebsforschung (DKFZ)
- Forschungszentrum Jülich (FZJ)
- Helmholtz Zentrum München (HMGU)
- Karlsruher Institut f
 ür Technologie (KIT)



HelmholtzZentrum münchen
Deutsches Forschungszentrum für Gesundheit und Umwelt

Project Structure

Terrestrial Modelling and Forecasting


Scientific Problem

- Earth system modelling
- Simulation of ground, water and atmosphere
- Inclusion of measurement data (e.g. satellite)

Methods

Data assimilation

- Volume problem
- Square assimilation matrices O(10^8) elements

Cloud and Solar Prediction

Scientific Problem

- Ensemble simulation of cloud cover.
- Prediction of solar radiation for energy sector

Methods

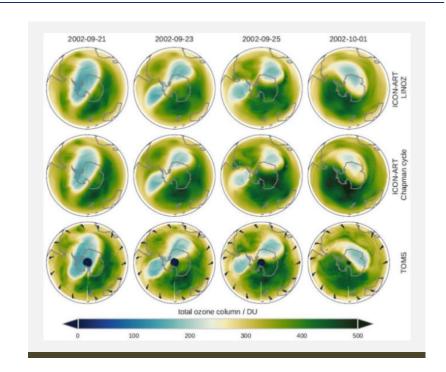
- Ensemble state selection
- Non-gaussian assimilation filters

Challenges

Small training data with large feature amount

Stratospheric Impact on Surface Climate

Scientific Problem


- Ensemble ozone layer simulation
- Hindcast approach

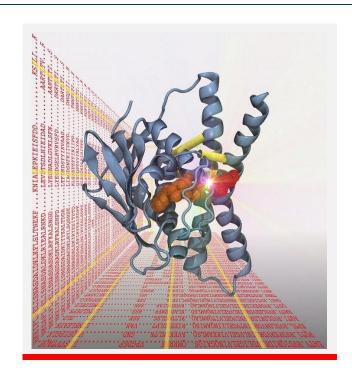
Methods

- Ensemble state estimation
- Deep neural network regression

Challenges

Legacy data resolution/conversion problem

Structural Biology


Scientific Problem

- Protein and RNA structure prediction
- Direct coupling analysis

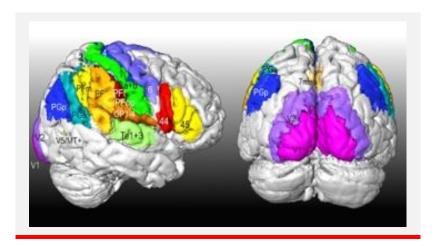
Methods

- Scatter experiments
- Molecular simulation
- Sequence prediction using NLP techniques

- Volume of sequencing/image scatter/simulation data
- Core research on sparse algebra in ML

Image-based Cohort Phenotyping

Problem


- Identification of functional areas in brain
- Effect of environment on brain development

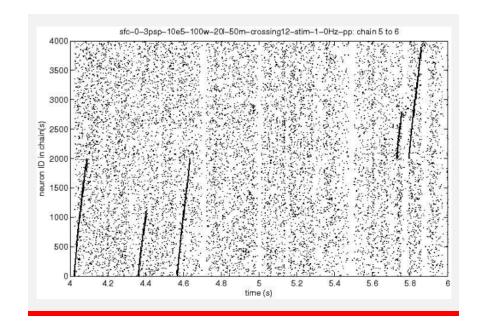
Methods

- Image processing of brain slices
- Volumetric reconstruction

Challenges

Data volume (entire cohort ~20 PB)

Interaction in Cortical Networks


Scientific Problem

- Determine cortical interactions of neurons
- Identify connected, spiking neuron "networks"

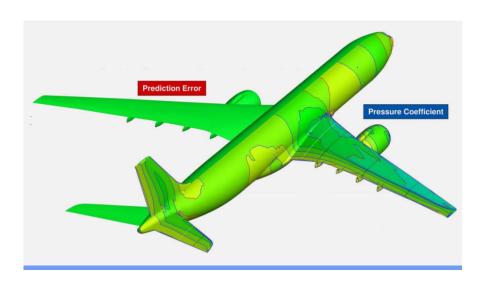
Methods

- Market-basket analysis
- Sequence analysis with auto-encoders

- Large search space (human: 10^10 neurons)
- Dimensionality reduction

Virtual Aircraft

Scientific Problem


- Aircraft design (especially sheer and pressure)
- Simulation of designs expensive
- Probabilistic candidate determination

Methods

- Dimensionality reduction
- Clustering and classification (neural network driven)
- (Gradient-) Kriging

Challenges

Verification of found solution

Volumetric Interpretation

Scientific Problem

- Photon scatter experiments
- Trigger system for fast filtering decision

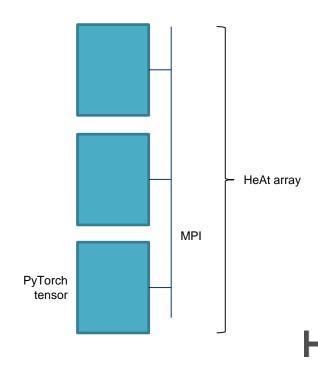
Methods

- Convolutional neural networks
- Classical image vision

- Data volume
- Velocity of data short decision time

Some Observations...

- Different domains, similar problems
- Data volume is main challenge (for our problems)
- Parallelization is major entry barrier into Big Data analysis
- Mixed computation mode
 - HPC simulation/data analysis model
 - HTC data parallel farming


HeAT – Helmholtz Analytics Toolkit

Vision: Distributed Numpy++

- Multi-dimensional, distributed arrays
- Look-and-feel of numpy
- Parallelization and distributed computing
 - Vectorization
 - GPUs
 - MPI communication
- Automatic differentation for neural networks
- Internally tensor engine: PyTorch

Try it! ... soon

https://github.com/helmholtz-analytics/heat

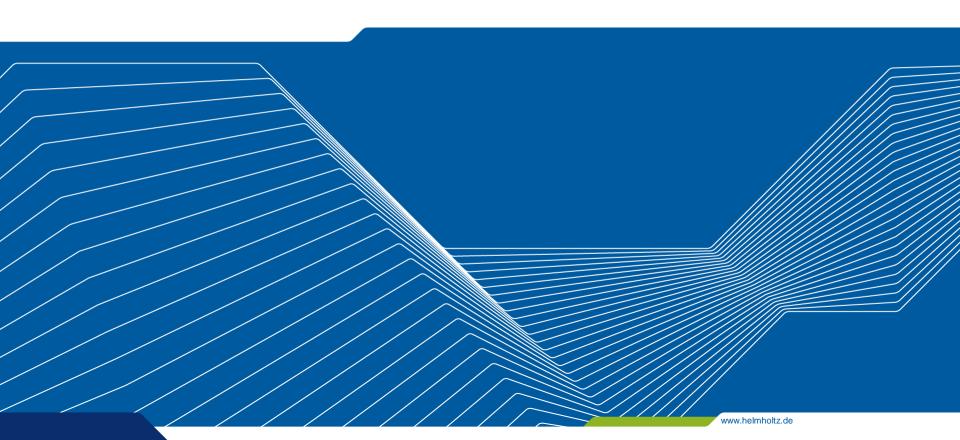
Conclusion

Summary

- Helmholtz Incubator
- Scientific big data analysis
- Highly multi-disciplinary

Outlook

- Active development on HeAT
- Porting of first complete data analysis pipelines



HELMHOLTZAnalytics Framework

