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FIG. 1: Machine-learning approach to discovering and op-
timizing quantum algorithms. We optimize an algorithm
for a given set of resources, which includes input resources
(ancilla and data qubits) and measurement resources (i.e.,
which qubits can be measured). The algorithm is then deter-
mined by the quantum gate sequence and the classical post-
processing of the measurement results. To find the algorithm
that computes the function x ! f(x), we minimize a cost
function that quantifies the discrepancy between the desired
output f(x(i)) and the actual output y(i) for a set of train-
ing data inputs {x(i)}. If the training data are sufficiently
general, the algorithm that minimizes the cost should be a
general algorithm that computes f(x) for any input x.

quantum computers, which is crucial for reducing the
computational error. Indeed, we found that our short-
depth algorithms reduced the error (compared to the
Swap Test) by 66% on IBM’s 5-qubit computer and by
70% on Rigetti’s 19-qubit computer.

Due to the fundamental nature of state overlap, the
Swap Test appears in many applications. In quantum su-

pervised learning [20, 21], which subsumes quantum sup-

port vector machines [22], the Swap Test is used to assign
each data vector to a cluster. The Swap Test allows one
to quantify entanglement, particularly the Renyi order-
2 entanglement, for many-body quantum states [19, 23].
The Swap Test is useful for benchmarking on a quan-
tum computer, since it can quantify the purity Tr(⇢2)
and hence the amount of decoherence that has occurred.
It also has application to quantum Merlin-Arthur games

[24]. For all of the above applications, our shorter-depth
algorithm can be directly substituted in place of the Swap
Test.

Note that if ⇢ and � represent states on n qubits, the
difficulty for computing Tr(⇢�) scales exponentially with
n for a classical computer. In contrast, the Swap Test
has a circuit depth that grows linearly in n, giving an
exponential speedup. Our ABA also has this property of
scaling linearly with n, and it achieves a constant factor
reduction in circuit depth (relative to Swap Test). On
the other hand, our BBA has the nice feature that its
circuit depth is constant, independent of n (although the
complexity of its classical post-processing grows linearly

FIG. 2: Swap Test circuits. (A) The canonical Swap Test
circuit. H indicates the Hadamard gate. (B) The Swap Test
circuit adapted for IBM’s 5-qubit quantum computer, con-
structed by decomposing controlled-swap into the Toffoli gate,
via Refs. [25, 26], and then manually eliminating gates that
had no effect on the output. T is the ⇡/8 phase gate. (C)
The structure of a Swap Test circuit, showing the locations of
the one-qubit gates and controlled-Z gates, constructed au-
tomatically by Rigetti’s compiler for their 19-qubit quantum
computer.

in n). Due to its constant circuit depth, the BBA seems
to be the best algorithm for quantifying state overlap on
near-term quantum computers.

In what follows, we first present our machine-learning
approach for discovering quantum algorithms. This ap-
proach can be applied to other applications besides over-
lap and hence should be of independent interest. Next,
we present our main results: short-depth circuits for com-
puting state overlap on idealized hardware. Then, we
present hardware-specific algorithms for computing over-
lap. Finally we discuss our implementation of these algo-
rithms on Rigetti’s and IBM’s quantum computers, lead-
ing to a reduction in the computational error relative to
the Swap Test.

II. MACHINE-LEARNING APPROACH

Our machine-learning approach is summarized in
Fig. 1. The general structure is that we divide the param-
eters up into the hyperparameters (i.e., the "resources")
and the optimization parameters (i.e., the "algorithm").

A. Resources

The hyperparameters are the quantum resources at the
input and output of the quantum circuit. At the input,
the resources are the number of ancilla qubits (each ini-
tialized in the |0i state) and data qubits (qubits that
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FIG. 3: Final cost that we obtained after minimizing our
cost function versus the circuit depth d. (A) The resources
allowed (shown in the inset) are the same as those allowed in
the Swap Test, i.e., one ancilla qubit, two data qubits, and one
measurement on the ancilla. This results in a minimum depth
of dmin = 8. (B) The scaling is obtained by increasing the
number of qubits in ⇢ and �, giving dmin = 14 for n = 2 qubits.
(C) Allowing for additional resources (shown in the inset) of
measurements on all of the qubits results in a minimum depth
of dmin = 2. (D) Again we obtain the scaling by increasing
the number of qubits in ⇢ and �, giving dmin = 4 for n = 2
qubits, when measurements on all qubits are allowed.

overlap. Hence, we generate our training data by ran-
domly choosing pure states according to the Haar mea-
sure.

Next we define a cost function. For algorithm Q~m, the
cost is

C~m =
NX

i=1

(f(x(i))� y
(i)
~m )2 . (5)

The cost quantifies the difference between the ideal out-
put f(x(i)) and the actual output y

(i)
~m for each training

data point. The actual output can be written as

y
(i)
~m = y

(i)

(~k,~✓,~c)
= ~c · ~p(i)

(~k,~✓)
(6)

where ~c is the post-processing vector and ~p
(i)

(~k,~✓)
is the

outcome probability vector for input x(i). For exam-
ple, in the Swap Test, the outcome probability vec-
tor corresponds to the ancilla qubit’s measurement, and
~c = (1,�1) ensures that y

(i)
~m is the expectation value of

the Pauli Z operator.
For a fixed circuit depth d, we search over the algo-

rithm space to minimize the cost. We consider various
d, incrementing from small to large values. When an ex-
act algorithm exists, we typically are able to minimize
the cost. That is, we can find a Q~m with C~m ⇡ 0, for
d > dmin, where dmin is the minimum depth needed to
minimize the cost (see Fig. 3 for example plots of final

cost versus d). Due to gauge freedom, there are typically
many Q~m that give zero cost for d > dmin. So, in the
Main Results section, we present our simplest formula-
tions of such algorithms.

D. Scaling

For a fixed problem size, we minimize the cost. If the
cost goes to zero (which we define as a cost less than
10�6), we say we have an algorithm instance. In partic-
ular, this corresponds to fixing the size of the data and
hence fixing nD, the number of data qubits. To study the
scaling of the algorithm, we grow the size of the problem
by increasing nD. In some cases, one may also need to
increase the number of ancilla qubits, nA, and/or the
number of measurements in order to minimize the cost.

This gives us a set of algorithm instances for various
problem sizes. An important challenge is to abstract a
general algorithm from these instances. This challenge
is particularly difficult because one can typically only
find algorithm instances for small problem sizes. This
is due to the fact that the search space for vectors ~k
grows rapidly with problem size, namely as n2d

T , where
nT = nD + nA is the total number of qubits and d is the
circuit depth.

In this work, we were able to manually recognize the
pattern by which the algorithm scales by inspecting the
various algorithm instances. In future work, we will ex-
plore automated methods for recognizing algorithm scal-
ing.

III. MAIN RESULTS

A. Overview

Our main results are short-depth algorithms for quan-
tifying overlap on idealized quantum computing hard-
ware. For the latter, we consider full connectivity, and
we allow for arbitrary one-qubit gates as well as CNOT
gates between all of the qubits.

We consider two sets of resources. The first set of
resources are identical to those allowed for the Swap Test,
i.e., access to one ancilla qubit and two data qubits, as
well as one measurement on the ancilla qubit. The cost
versus depth for these resources is shown in Fig. 3(A),
and we obtained essentially zero cost for d = 8. To see
the scaling, we increase the number of qubits in ⇢ and �
to n = 2, giving a minimum depth of d = 14, as shown in
Fig. 3(B). As discussed below this leads to an algorithm
(shown in Fig. 4) that we refer to as our ancilla-based
algorithm (ABA).

The second set of resources we consider allows for mea-
surements on all of the qubits. For these additional re-
sources, Figure 3(C) shows that zero cost is obtained for
d = 2. To see the scaling, we increase the number of
qubits to n = 2, giving a minimum depth of d = 4,
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motivation: Electron and neutrino scattering from nuclei

quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.

191Benhar, Day, and Sick: Inclusive quasielastic electron-nucleus …

Rev. Mod. Phys., Vol. 80, No. 1, January–March 2008

Typical rational: use simple probe to study target structure and dynamics
Neutrinos: determine a few parameters of the probe from  

interactions with (complicated) nucleus 
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by the excitation operator Ô can be fully characterized
using the Dynamical Response Function, which can be
expressed as

SO(!) =
X

⌫

|h ⌫ |Ô| 0i|2�(E⌫ � E0 � !) (1)

where | 0i is the ground-state of the system with energy
E0, | ⌫i are the final states of the reaction with ener-
gies E⌫ and ! is the energy transfer. It is convenient
to rescale the response function so that it’s zero moment
(the integral over frequencies) is 1; this can be achieved
by defining

Sr
O(!) =

X

⌫

|h ⌫ |Ô| 0i|2
hÔ2i0

�(E⌫ � E0 � !) . (2)

The final normalization can be restored by either us-
ing the knowledge of one of the sum rules or by di-
rect evaluation of the ground state expectation value
hÔ2i0 ⌘ h 0|Ô2| 0i. Understanding this, in the follow-
ing we will drop the superscript r.

Our goal is to estimate the dynamical response func-
tion SO(!) with energy resolution �! and a precision
�S with probability 1 � ✏. We will indicate the di↵er-
ence between the largest eigenvalue of Ĥ and the ground
state energy by: �H = Emax�E0. Note that this quan-
tity grows only polynomially with system size for most
Hamiltonians of interest (see discussion below).

In the following we will assume to have access to three
black-box quantum procedures (oracles):

• a unitary ÛG which prepares the ground-state of
the Hamiltonian of interest

• a unitary ÛO which implements time evolution un-
der Ô for a short time � < poly(�S)

• a unitary Ût which implements time evolution un-
der the system Hamiltonian for time t

Even though the oracle ÛG may be impractical to im-
plement for a general Hamiltonian, for most systems of
interest many di↵erent algorithms are available in the
literature ([24–32]) and some have already be tested on
simple nuclear systems [33]. Also, close to optimal strate-
gies to implement the time-evolution operator for sparse
Hamiltonians are known [34, 35] and for Hubbard-type
Hamiltonians (like those derived within lattice-EFT [16])
e�cient implementations of Trotter steps with sub-linear
circuit depth are available [36]. For the common case
where Ô is a one-body operator the latter strategies can
be used to implement ÛO e�ciently.

Our scheme is composed of two quantum circuits

• a state preparation routine requiring O(1) calls to
ÛG and ÛO with a success probability (see Sec. IA)

Psuccess = O
 
�S

hÔ2i0
kÔk2

!
(3)

where h·i0 denotes the expectation value on the
ground state and k · k is the operator norm;

• a second routine that provides access to SO(!)
which requires W = log2 (�!/�H) ancilla qubits,
the application of Ût for a maximum time tmax =
2⇡/�! and additional O (Wlog(W ))) gates

For typical situations where the implementation of ÛG

requires considerable e↵ort the success probability of the
first routine can be amplified to O(1) with additional
O(1/P 2

success) calls to the oracle ÛO. An alternative al-
gorithm which removes the dependence of Psuccess on �S
but is more di�cult to make deterministic is also pre-
sented in Sec. IA.
This whole circuit needs to be run a number of times

given approximately by

Nrep ⇡ ln

✓
2

✏

◆
1

2�2S
(4)

independent of the target resolution �!.
In summary, for a given choice of the excitation oper-

ator Ô our algorithm can be described by the following
steps:

while iteration number less than Niter do

prepare the ground state using ÛG

run the first quantum algorithm (Sec. IA)
if algorithm succeeds then

we have prepared |�Oi / Ô| 0i
run the second quantum algorithm (Sec. I B)
store result for classical post-processing
if final state information needed then

measure final state (eg. Sec II)
end if

end if

end while

In the next sections we describe in detail the implementa-
tion of the two quantum routines introduced above. We
also present examples obtained by classical simulation of
a simple 2D fermionic system described by the Hubbard
hamiltonian

H = �t
2X

�=1

MX

hi,ji

⇣
c†i,�cj,� + ci,�c

†
j,�

⌘

+ U
MX

i=1

n̂i,"n̂i,# ,

(5)

where hi, ji indicates the nearest-neighbor lattice sites
and n̂i,� = c†i,�ci,� denotes the number operator. The
results shown here were obtained for A = 2 ”nucleons”,
M = 312 lattice sites and U/t = �2. These parameters
are chosen to give a bound state considerably smaller
than the lattice.
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|h ⌫ |Ô| 0i|2
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3 ingredients to algorithm:

• State preparation:  Ground state (or finite T)
• Unitary Operator which implements linear  

                       coupling O(q)
• Unitary Operator which implements time evolution  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Algorithm (continued)

To produce a state:   

Define an ancillary q-bit and a unitary oeprator: 

3

A. State preparation algorithm

The first problem we have to solve is the preparation
of the state |�Oi given a quantum register initialized in
the ground-state | 0i. Let’s start by adding an ancilla
qubit and defining the unitary operator

Û�
S = e�i�Ô⌦�

y =

✓
cos(�Ô) �sin(�Ô)
sin(�Ô) cos(�Ô)

◆
(6)

where the Pauli �x operator acts on the ancilla and the
final matrix representation is on the basis spanned by the
states {|0i, |1i} of the ancilla. Note that this unitary can
be implemented e�ciently with just 2 calls to a controlled
version of the oracle ÛO and additional O(1) one-qubit
gates.

By initializing the ancilla register to |1i, applying Û�
S

and measuring the state |0i we have e↵ectively produced

(1⌦|0ih0|) Û�
S | 0i⌦|1i = |�Oiph�O|�Oi

+O
⇣
�2kÔk2

⌘
(7)

which di↵ers from the wanted state by corrections of or-
der �2. The error in the implementation of the unitary
ÛO needs to be at least of the same order, which means
a simple single Trotter step will su�ce. The state prepa-
ration has a success probability of

Psuccess = P (|0i) = h 0|sin(�Ô)2| 0i
= �2hÔ2i0 +O �

�4
�
.

(8)

This approach for the application of a non-unitary
transformation is similar in spirit to earlier work (see eg.
[37, 38]) and it su↵ers from a possibly very low e�ciency
since we may need O(1/�2) trials to succeed. One op-
tion is to perform the algorithm at a few relatively large
values of � and fit a quadratic function to extrapolate
out the error from the final response function. This ap-
proach is however complicated if one is interested also
in properties of the final states. A second approach, al-
ready proposed in [37], is to repeat the application of the
unitary Û�

S until success. This works because cos(�Ô) is
approximately the identity. In order to obtain a success
probability P (|0i) = O(1) we will need O(1/�2) repeti-
tions. In addition, if the inverse Ô†

G of the ground-state
preparation circuit is available then it’s possible to use
Amplitude Amplification [39] to gain a quadratic speedup
over this [40].

Note that by using the normalized state |��
Oi we will

compute the normalized response function Eq. (2). If no
sum-rules are known one can estimate the normalization
constant by estimating the success probability Eq. (8) at
di↵erent values of � and extrapolating.

Since the state preparation through the unitary Û�
S is

only approximate, the parameter � would need to de-
pend on the final target accuracy. As mentioned in the
introduction an alternative scheme that avoids this prob-
lem by removing the error in Eq. (7) can be obtained by

representing the excitation operator Ô as a linear combi-
nation of D unitary matrices

Ô =
DX

k=1

↵kÛk ↵ =
DX

k=1

|↵k| � kÔk (9)

which can be e�ciently implemented employing addi-
tional m = log2(D) ancilla qubits using known tech-
niques [34, 35, 41]. The success probability in this case
is given by

P̄success =
hÔ2i0
↵2

(10)

which depending on the particular case may be larger
than Eq.(3). The main drawback of this approach is
that Amplitude Amplification is the only process that
can make the algorithm deterministic since upon failure
the output state can in general be very di↵erent from the
starting point.

B. Response Function estimation

We now present our strategy to obtain the response
function trough the standard Phase Estimation Algo-
rithm (PEA) [42]. It is convenient to shift and scale the
original Hamiltonian:

H =
H � E0

�H
) H| ⌫i = �⌫ | ⌫i (11)

so that we map the energy spectrum to �⌫ 2 [0, 1].
By direct calculation we see that the response function

SO(!) obtained from eH is related to the original one by

�HSO(!) = SO(!) , (12)

for a scaled frequency ! 2 [0, 1].
Our goal is to estimate SO(!) e�ciently. We do this

by using PEA on an auxiliary register of W qubits with
the evolution operators

Uk = ei2k⇡
eH ) Uk| ⌫i = ei2k⇡�⌫ | ⌫i (13)

for k = 0, . . . , 2W � 1. The resulting circuit will have
depth O (Wlog(W ) +Nt

max

), where the first term comes
from the inverse Quantum Fourier Transform [43] and
Nt

max

is the gate count needed for a time evolution of
tmax = O (2⇡/�!) using the oracle Ût. The resulting
probability of measuring the W ancilla qubits in the bi-
nary representation of the integer y 2 [0, 2W � 1] is (see
eg. [44] for more details)

P (y) =
1

22W

X

⌫

|h ⌫ |�Oi|2
sin2

�
2W⇡

�
�⌫ � y

2W

��

sin2
�
⇡
�
�⌫ � y

2W

��

⌘ 1

2W

X

⌫

|h ⌫ |�Oi|2F2W

⇣
2⇡

⇣
�⌫ � y

2W

⌘⌘ (14)

Initialize this bit to |1> and apply this operator

3

A. State preparation algorithm

The first problem we have to solve is the preparation
of the state |�Oi given a quantum register initialized in
the ground-state | 0i. Let’s start by adding an ancilla
qubit and defining the unitary operator

Û�
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G of the ground-state
preparation circuit is available then it’s possible to use
Amplitude Amplification [39] to gain a quadratic speedup
over this [40].

Note that by using the normalized state |��
Oi we will

compute the normalized response function Eq. (2). If no
sum-rules are known one can estimate the normalization
constant by estimating the success probability Eq. (8) at
di↵erent values of � and extrapolating.

Since the state preparation through the unitary Û�
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which can be e�ciently implemented employing addi-
tional m = log2(D) ancilla qubits using known tech-
niques [34, 35, 41]. The success probability in this case
is given by

P̄success =
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Probability for success for creating the state

 O = O | 0i
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Use standard phase estimation algorithm to calculate response

3

A. State preparation algorithm

The first problem we have to solve is the preparation
of the state |�Oi given a quantum register initialized in
the ground-state | 0i. Let’s start by adding an ancilla
qubit and defining the unitary operator

Û�
S = e�i�Ô⌦�

y =

✓
cos(�Ô) �sin(�Ô)
sin(�Ô) cos(�Ô)

◆
(6)

where the Pauli �x operator acts on the ancilla and the
final matrix representation is on the basis spanned by the
states {|0i, |1i} of the ancilla. Note that this unitary can
be implemented e�ciently with just 2 calls to a controlled
version of the oracle ÛO and additional O(1) one-qubit
gates.

By initializing the ancilla register to |1i, applying Û�
S

and measuring the state |0i we have e↵ectively produced

(1⌦|0ih0|) Û�
S | 0i⌦|1i = |�Oiph�O|�Oi

+O
⇣
�2kÔk2

⌘
(7)

which di↵ers from the wanted state by corrections of or-
der �2. The error in the implementation of the unitary
ÛO needs to be at least of the same order, which means
a simple single Trotter step will su�ce. The state prepa-
ration has a success probability of

Psuccess = P (|0i) = h 0|sin(�Ô)2| 0i
= �2hÔ2i0 +O �

�4
�
.

(8)

This approach for the application of a non-unitary
transformation is similar in spirit to earlier work (see eg.
[37, 38]) and it su↵ers from a possibly very low e�ciency
since we may need O(1/�2) trials to succeed. One op-
tion is to perform the algorithm at a few relatively large
values of � and fit a quadratic function to extrapolate
out the error from the final response function. This ap-
proach is however complicated if one is interested also
in properties of the final states. A second approach, al-
ready proposed in [37], is to repeat the application of the
unitary Û�

S until success. This works because cos(�Ô) is
approximately the identity. In order to obtain a success
probability P (|0i) = O(1) we will need O(1/�2) repeti-
tions. In addition, if the inverse Ô†

G of the ground-state
preparation circuit is available then it’s possible to use
Amplitude Amplification [39] to gain a quadratic speedup
over this [40].

Note that by using the normalized state |��
Oi we will

compute the normalized response function Eq. (2). If no
sum-rules are known one can estimate the normalization
constant by estimating the success probability Eq. (8) at
di↵erent values of � and extrapolating.

Since the state preparation through the unitary Û�
S is

only approximate, the parameter � would need to de-
pend on the final target accuracy. As mentioned in the
introduction an alternative scheme that avoids this prob-
lem by removing the error in Eq. (7) can be obtained by

representing the excitation operator Ô as a linear combi-
nation of D unitary matrices

Ô =
DX

k=1

↵kÛk ↵ =
DX

k=1

|↵k| � kÔk (9)

which can be e�ciently implemented employing addi-
tional m = log2(D) ancilla qubits using known tech-
niques [34, 35, 41]. The success probability in this case
is given by

P̄success =
hÔ2i0
↵2

(10)

which depending on the particular case may be larger
than Eq.(3). The main drawback of this approach is
that Amplitude Amplification is the only process that
can make the algorithm deterministic since upon failure
the output state can in general be very di↵erent from the
starting point.

B. Response Function estimation

We now present our strategy to obtain the response
function trough the standard Phase Estimation Algo-
rithm (PEA) [42]. It is convenient to shift and scale the
original Hamiltonian:

H =
H � E0

�H
) H| ⌫i = �⌫ | ⌫i (11)

so that we map the energy spectrum to �⌫ 2 [0, 1].
By direct calculation we see that the response function

SO(!) obtained from eH is related to the original one by

�HSO(!) = SO(!) , (12)

for a scaled frequency ! 2 [0, 1].
Our goal is to estimate SO(!) e�ciently. We do this

by using PEA on an auxiliary register of W qubits with
the evolution operators

Uk = ei2k⇡
eH ) Uk| ⌫i = ei2k⇡�⌫ | ⌫i (13)

for k = 0, . . . , 2W � 1. The resulting circuit will have
depth O (Wlog(W ) +Nt

max

), where the first term comes
from the inverse Quantum Fourier Transform [43] and
Nt

max

is the gate count needed for a time evolution of
tmax = O (2⇡/�!) using the oracle Ût. The resulting
probability of measuring the W ancilla qubits in the bi-
nary representation of the integer y 2 [0, 2W � 1] is (see
eg. [44] for more details)

P (y) =
1

22W

X

⌫

|h ⌫ |�Oi|2
sin2

�
2W⇡

�
�⌫ � y

2W

��

sin2
�
⇡
�
�⌫ � y

2W

��

⌘ 1

2W

X

⌫

|h ⌫ |�Oi|2F2W

⇣
2⇡

⇣
�⌫ � y

2W

⌘⌘ (14)

For k = 0… 2W-1
Depth of circuit: 
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cos(�Ô) �sin(�Ô)
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↵kÛk ↵ =
DX

k=1

|↵k| � kÔk (9)
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hÔ2i0
↵2

(10)

which depending on the particular case may be larger
than Eq.(3). The main drawback of this approach is
that Amplitude Amplification is the only process that
can make the algorithm deterministic since upon failure
the output state can in general be very di↵erent from the
starting point.

B. Response Function estimation

We now present our strategy to obtain the response
function trough the standard Phase Estimation Algo-
rithm (PEA) [42]. It is convenient to shift and scale the
original Hamiltonian:

H =
H � E0

�H
) H| ⌫i = �⌫ | ⌫i (11)

so that we map the energy spectrum to �⌫ 2 [0, 1].
By direct calculation we see that the response function

SO(!) obtained from eH is related to the original one by

�HSO(!) = SO(!) , (12)

for a scaled frequency ! 2 [0, 1].
Our goal is to estimate SO(!) e�ciently. We do this

by using PEA on an auxiliary register of W qubits with
the evolution operators

Uk = ei2k⇡
eH ) Uk| ⌫i = ei2k⇡�⌫ | ⌫i (13)

for k = 0, . . . , 2W � 1. The resulting circuit will have
depth O (Wlog(W ) +Nt

max

), where the first term comes
from the inverse Quantum Fourier Transform [43] and
Nt

max

is the gate count needed for a time evolution of
tmax = O (2⇡/�!) using the oracle Ût. The resulting
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Probability of obtaining binary integer y  is equal to 

Accurate representation of the response

W log(W ) +N

max
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where F2W (x) is the well-known Fejer kernel from Fourier
analysis (see eg. [45]). The probability distribution P (y)
is a good approximation of SO(!) since this kernel can
be seen as a representation of the delta function with
width �x ⇡ 2�W . Therefore if we require a frequency
resolution �! we will need W = log2 (�H/�!) auxiliary
qubits and a polynomial number of applications of the
time evolution operator to obtain a sample from P (y).

As mentioned above, for most Hamiltonians of interest
the energy gap�H scales only polynomially with the size
of the system.

We now need to estimate P (y) from N samples drawn
from it. Since y is a discrete variable an e�cient way of
reconstructing the probability distribution is by produc-
ing an histogram hN (y) from the samples. Using Hoe↵d-
ing’s inequality [46] we find that

Pr (|hN (y)� P (y)| � �)  2e�2N�2 , (15)

which implies in order to obtain a precision � with prob-
ability 1� ✏ we need approximately

N = ln

✓
2

✏

◆
1

2�2
(16)

independent samples.
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FIG. 1. Approximations of the true response function SO(!)
for the model system described by the hamiltonian of Eq. (5)
for di↵erent numbers of the work qubits: W = 6 (blue line),
W = 8 (red line) and W = 12 (green line). The exact re-
sponse is also shown with black dots. The inset shows the
maximum error in the sample estimate of P (y) as a function
of the number of samples.

In Fig. 1 we plot the approximate response P (y) for
the model Hamiltonian Eq. (5) at three di↵erent values
of W (6,8,12). By comparing with the exact result shown
as black dots, we see that for W = 12 the e↵ect of energy
resolution is negligible but already with W = 8 we ob-
tain a rather accurate estimate for SO(!). Even W = 6
reproduces important features of the response, which in
experiments is convoluted with the detector resolution.
The inset shows the convergence of the maximum error

�max = sup
y2[0,...,2W�1]

|hN (y)� P (y)| (17)

as a function of the sample size N . Response functions
relevant for ⌫ and e� scattering are typically smooth at
high energy and hence require small W and short prop-
agation times.
Finally, in order to obtain a negligible bias from the

state preparation we need the parameter � to scale as

� / C

p
�

kÔk (18)

for some constant C = O(1). Note that the Hamilto-
nian evolution implemented in Ût has to have an error
✏t  �2kÔk2 to be negligible (luckily algorithms with
only logarithmic dependence on ✏t are known [34, 41]).
This concludes the proof of the scalings (3) and (4).

II. FINAL STATE MEASUREMENTS

In electron- or neutrino-nuclear scattering experi-
ments [9, 47–60] one would like to infer the probability
P (q,!|~p) that the probe transferred energy-momentum
(q,!) to the nucleus and simultaneously that the final
state includes a nucleon (or neutron or proton) of mo-
mentum (~p). More concretely this amounts to an infer-
ence procedure of the form

P (q,!|~p) = P (~p|q,!)P (q,!)

P (~p)

= P (~p|q,!)P (!|q)P (q)

P (~p)

(19)

where P (~p) results from the experimental measure,
P (~p|q,!) is the momentum distribution of the final states
for a process with given (q,!) and P (q|!) ⌘ S(q,!). The
prior probability P (q) depends on the static response of
the nucleus and the characteristic of the probe beam and
can be updated given the other ones by a Bayesian pro-
cedure. The above section explains how to obtain S(q,!)
with a given accuracy and in the following we will show
how to evaluate few-body momentum distributions given
by the final state of the algorithm above. Note that af-
ter measuring the W ancilla qubits of Sec.I B the main
register will be left in a state | f i composed by a lin-
ear superposition of final states corresponding to energy
transfer ! ±�!. Imagine we want now to compute ex-
clusive 1 and 2-body momentum distributions

n1(A) = h f |n̂A| f i n2(A,B) = h f |n̂An̂B | f i (20)

where n̂k ⌘ n̂(~pk,�k, ⌧k) is the number operator for a
state with momentum ~pk, spin �k and isospin ⌧k. We
can define a unitary operator Un

A

= exp(�i⇡n̂A) (which
is e�ciently implementable) and run the following circuit
with an ancilla qubit

|0i H • H

| f i Un
A

(21)

Simple Example: 2 body Hubbard Model:  
N=2, 31x31 lattice

Basic features revealed with just a few steps, exact details over many 
order of magnitude for W=12



Topics being explored now:

• Access to explicit final states:     
                         Energy and momenta of outgoing particles

• Reducing circuit depth for high energy scattering
• Actual implementation of simple problem on QC
• Related problems in NP and other fields
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Longer Term

Whole new fields of both theory and experiment 
 with full treatment quantum dynamics:

• More sophisticated theories of quantum structure and dynamics
• Much wider range of direct confrontation between  
     theory and experiment

• Enables much more reliable extrapolations to regimes 
      not experimentally accessible


