TUCAN EDM

TRIUMF Ultra-Cold Advanced Neutron project

Jeff Martin, The University of Winnipeg

TRIUMF PP-EEC, March 24, 2022

Physics of Neutron Electric Dipole Moment

- Search for new sources of CP violation beyond the standard model.
- Motivated by:
 - New physics for electroweak baryogenesis
 - SUSY CP problem / new TeV-scale physics
 - Strong CP problem / Peccei-Quinn, axions
 - Other new physics scenarios

 $hv = 2\mu B \pm 2dE$

• Spin precession frequency of ultracold neutrons in a bottle

$$\sigma_d = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

 $\langle \phi \rangle \neq 0$

Adapted from Morrissey & Ramsey-Musolf New J. Phys. 2012

TUCAN goal: $\sigma_d = 1 \times 10^{-27}$ ecm in 400 days of running.

Neutron EDM – experimental status

TUCAN: Uniqueness and competitive edge

- Spallation-driven He-II UCN source can surpass competing so-D₂ UCN sources (longer UCN storage times) and reactor-driven He-II sources (lower heating per unit neutron flux).
- Proven technology of room-temperature neutron EDM experiment. Low risk with window of opportunity to surpass fully cryogenic experiments.
- Unique features of our neutron EDM experiment:
 - Self-shielded B₀ coil.
 - NMOR-based magnetometers.
 - R&D on possible Xe comagnetometer (farther future).
- And are building on the R&D of other groups:
 - Magnetically shielded room (MSR).
 - Dual measurement cells.

TUCAN Collaboration

H. Akatsuka¹, C. Bidinosti², C. Davis³, B. Franke^{3,4}, D. Fujimoto³, M. Gericke⁵, P. Giampa⁶, R. Golub⁷, S. Hansen-Romu^{5,2}, K. Hatanaka^{8,*}, T. Higuchi⁸, G. Ichikawa⁹, S. Imajo⁸, B. Jamieson², S. Kawasaki⁹, M. Kitaguchi¹, W. Klassen^{4,5,2}, E. Klemets⁴, A. Konaka^{3,10}, E. Korkmaz¹¹, E. Korobkina⁷, F. Kuchler³, M. Lavvaf^{5,2}, T. Lindner^{3,2}, K. Madison⁴, Y. Makida⁹, J. Mammei⁵, R. Mammei^{2,3}, J. Martin^{2,*}, R. Matsumiya³, M. McCrea², E. Miller⁴, K. Mishima⁹, T. Momose⁴, T. Okamura⁹, H.J. Ong⁸, R. Picker^{3,12}, W.D. Ramsay³, W. Schreyer³, A. Sher³, H. Shimizu¹, S. Sidhu¹², S. Stargardter^{5,2}, I. Tanihata⁷, S. Vanbergen⁴, W.T.H. van Oers^{5,3}, Y. Watanabe⁹

¹Nagoya University, ²The University of Winnipeg, ³TRIUMF,
⁴The University of British Columbia, ⁵University of Manitoba, ⁶SNOLAB,
⁷North Carolina State University, ⁸RCNP Osaka, ⁹KEK,
¹⁰Osaka University, ¹¹University of Northern BC, ¹²Simon Fraser University

*cospokespersons (K. Hatanaka and J. Martin)

Jan. 2022 virtual collaboration meeting

Previous "Vertical" UCN Source at TRIUMF

- In preparation (Phys. Rev. C): new data that collapses the horizontal error bars on this plot (<~ 0.01 K).
- Allows extraction of the parameters describing the interaction of UCN with phonons in the He-II.

Ongoing upgrade: Next generation He-II cryostat (the "horizontal source") Improvements compared to "vertical" source • Material potential He-II is 18 neV, use near-horizontal extraction

Hot neutrons from spallation target

Horizontal source status

New "horizontal" source progress

- He-II cryostat
 - arrived at TRIUMF (July 2021). Reassembly completed. Room-temperature leakchecking nearly complete.
- Tail section and cryo-connection box
 - Engineering design completed.
 - Cryo-connection box contract signed.
 - Test of tail section "wall 1" with ultracold neutrons at LANL (required by TUCAN EAC review committee, 2020) (Nov. 2021).
 - All other components of tail section being manufactured. Preparing for welding at TRIUMF.
- Pumps that provide cooling to source arrived at TRIUMF (Oct. 2021).
- Transfer line from liquefier to source arriving soon (Apr. 2022).

Tail section wall 1 (He-II vessel)

UCN Source Schedule

- All schedules assumed work in cryostat pit can continue during 1A running.
- Might not be possible, work with rad. protect. group to find solution.

TUCAN EDM experiment layout

Magnetically shielded room (MSR)

- Final design/fab in progress (inner floor and Cu layer are all that remains for design work).
- Installation begins July 2022, completed 2023.

Door motion mechanism

More progress (EDM subsystems)

- Equipment in the mechanical design/construction phase:
 - External field compensation (RCNP Osaka, TRIUMF) (design phase)
 - Internal coils (Winnipeg, TRIUMF)
 - UCN detector (Winnipeg)
 - UCN spin analysis (Winnipeg, RCNP Osaka, TRIUMF)
 - HV/cell/valves/central region (TRIUMF)
 - Hg comagnetometer and Xe development lab (UBC)
 - NMOR-based Cs magnetometers (Winnipeg)
- Challenge: budget.
 - Cost overruns in UCN source (driven by pandemic cost increases) have forced us to re-evaluate our budget. This may lead to descoping/rescoping the EDM experiment. This will be a major element of our upcoming EAC review.

(proto., nearing construction) (proto., test at J-PARC 2022) (design, test at J-PARC 2022) (proto., test at J-PARC 2022) (proto., prep. design) (5 completed, 5 on order)

Example: Cs NMOR sensors

- Fully non-magnetic Cs sensors with no electric parts.
- Precise to ~ pT/rtHz
- Key requirement of < pT frequency shifts difficult to measure (need MSR)

Can now operate five sensors at once. Five more on order.

(But can only fit two in our small magnetic shield – looking forward to MSR!!!)

EDM Schedule

- MSR schedule is most up to date and realistic.
- Recent large push to get other subsystems incorporated more fully.

TUCAN Plans

- 2021-202<mark>3</mark>:
 - Complete the upgrade of the UCN source
 - Design and build the nEDM experiment
 - Commission UCN source with beam (2023)
- 2023:
 - Commission MSR (magnetic testing)
 - First beam to nEDM experiment (likely 2024)
- Beyond (2024-):
 - Run the nEDM experiment for statistics, and systematics studies
 - Develop user facility and other experiments
- Transition from C. Marshall to J. Chak as project engineer. C. Marshall will focus on LD_2 cryostat completion.
- Funding Board (FB) and Expert Advisory Committee (EAC) will review our progress in May 2022.

EAC Review – elements of draft charge

- Review the cost, schedule, and personnel plan for the project. Review the competitiveness of the project considering the descoping/rescoping needs.
- 2. Review the status, progress and plans for the UCN source.
- 3. Evaluate the plan and feasibility for the LD2 cold moderator system.
- 4. Review progress on the nEDM experiment.
- 5. Evaluate the proposed scope reduction and rebaselining plan for the nEDM experiment.
- 6. Review the future upgrade plan, in light of the descoping.

Conclusions

- Strong physics interest with tight constraint placed on CP violation.
- Highly competitive field with many new ideas, technologies.
- TUCAN EDM experiment aims at 10⁻²⁷ ecm uncertainty, order of magnitude improvement on previous best experiment.
- TUCAN source upgrade complete by 2023. Neutron EDM experiment installation on track with MSR being installed in 2022-23.
- Preparing for upcoming EAC review (May 2022).

Thank you!

Chaires Canada de recherche Research du Canada Chairs

Canada

INNOVATION.CA FONDATION CANADIENNE POUR L'INNOVATION **CANADA FOUNDATION** FOR INNOVATION