
A next generation pion decay experiment

PIONEER

Chloé Malbrunot on behalf of the PIONEER group at TRIUMF Particle physics department

5YP Planning within Particle Physics for 2025-2030 29/03/2022

PIONEER COLLABORATION

International collaboration across Asia, Europe & North America

W. Altmannshofer,¹ H. Binney,² E. Blucher,³ D. Bryman,^{4,5} L. Caminada,⁶ S. Chen,⁷ V. Cirigliano,⁸ S. Corrodi,⁹ A. Crivellin,^{6, 10, 11} S. Cuen-Rochin,¹² A. DiCanto,¹³ L. Doria,¹⁴ A. Gaponenko,¹⁵ A. Garcia,² L. Gibbons,¹⁶ C. Glaser,¹⁷ M. Escobar Godoy,¹ D. Göldi,¹⁸ S. Gori,¹ T. Gorringe,¹⁹ D. Hertzog,² Z. Hodge,² M. Hoferichter,²⁰ S. Ito,²¹ T. Iwamoto,²² P. Kammel,² B. Kiburg,¹⁵ K. Labe,¹⁶ J. LaBounty,² U. Langenegger,⁶ C. Malbrunot,⁵ S.M. Mazza,¹ S. Mihara,²¹ R. Mischke,⁵ T. Mori,²² J. Mott,¹⁵ T. Numao,⁵ W. Ootani,²² J. Ott,¹ K. Pachal,⁵ C. Polly,¹⁵ D. Počanić,¹⁷ X. Qian,¹³ D. Ries,²³ R. Roehnelt,² B. Schumm,¹ P. Schwendimann,² A. Seiden,¹ A. Sher,⁵ R. Shrock,²⁴ A. Soter,¹⁸ T. Sullivan,²⁵ M. Tarka,¹ V. Tischenko,¹³ A. Tricoli,¹³ B. Velghe,⁵ V. Wong,⁵ E. Worcester,¹³ M. Worcester,²⁶ and C. Zhang¹³

- Participants from PIENU, PEN/PiBeta, and MEG/MEGII as well as international experts in rare kaon decays, low-energy stopped muon experiments, the Muon g – 2 experimental campaign, high energy collider physics, neutrino physics etc
- The collaboration is still developing and welcomes new members

spokespersons

¹University of California Santa Cruz ²Dpt Phys. University of Washington ³University of Chicago ⁴University of British Columbia ⁵ TRIUMF ⁶Paul Scherrer Institute ⁷Tsinghua University 8Institute for Nucl. Theory, University of Washington ⁹Argonne National Laboratory ¹⁰University of Zurich 11CERN 12Tec de Monterrey ¹³Brookhaven National Laboratory ¹⁴PRISMA⁺ Cluster of Excellence, University of Mainz 15 Fermilab 16Cornell University ¹⁷University of Virginia ¹⁸ETH Zurich ¹⁹University of Kentucky ²⁰University of Bern 21 KEK 22University of Tokyo ²³University of Mainz ²⁴Stony Brook University

25University of Victoria 26 Inst. Div, BNL

PHYSICS CASE

Rare pion decays studies are sensitive probes for new physics

$$R_{SM}^{\pi} = \frac{\pi \to e\nu(\gamma)}{\pi \to \mu\nu(\gamma)} = (1.23534 \pm 0.00015) \times 1$$

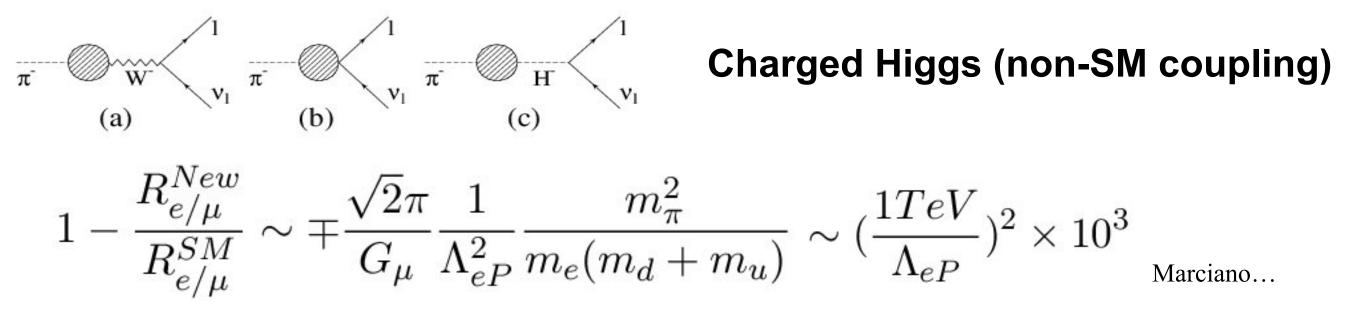
- Possibly the most accurately calculated decay process involving hadrons
- Experiments are an order of magnitude less precise than theory \rightarrow window for new physics
- Addressing existing tensions in flavour physics
 - Muon g-2 Deviation (4.2 σ) from theory - new physics?
 - B decays O(10%) deviations from universality. \bullet Both heavy quarks and leptons involved!
 - CKM unitarity tests from β and K decays (2 3 σ) \bullet Maybe related to LFUV?
- PIENU results : $\frac{g_e}{de} = 0.9989 \pm 0.0009 \quad (\pm 0.09\%)$) g_{μ}
- Further improved measurements of leptons flavour universality might provide additional clues on these tensions

 $(\pm 0.012\%)$

		VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN 0	CHG	СОММ
	PIENU	1.2327 ± 0.0023 OUR AV	ERAGE					
		$1.2344 \!\pm\! 0.0023 \!\pm\! 0.0019$	400k	AGUILAR-AR	. 15	CNTR -	+	Stopp
	(a) TRIUMF	$1.2346 \pm 0.0035 \pm 0.0036$	120k	CZAPEK	93	CALO		Stopp
	C	$1.2265 \pm 0.0034 \pm 0.0044$	190k	BRITTON	92	CNTR		Stopp
		$1.218\ \pm 0.014$	32k	BRYMAN	86	CNTR		Stopp
		$\bullet \bullet \bullet$ We do not use the	following d	ata for averages,	fits, l	imits, etc	. • •	•
	PDG 2018	1.273 ± 0.028	11k	¹ DICAPUA	64	CNTR		
	1 DO 2010	1.21 ± 0.07		ANDERSON	60	SPEC		
	± 0.19 %	¹ DICAPUA 64 has bee	en updated	using the current	mear	n life.		

However charged Lepton Flavor Universality tested at $O(10^{-3})$ level in π, τ, K decays (PDG value, mostly constrained by

3


MENT

ping $\pi^ op$ ping π^+ bing $\pi^$ ping π^{\neg}

PHYSICS CASE (Cont.)

Pseudoscalar interactions

- Sensitive to many other new physics scenarios
 - Leptoquarks
 - Induced scalar currents
 - Excited gauge bosons
 - Compositeness
 - SU(2)xSU(2)xSU(2)xU(1)
 - Hidden sector

PHYSICAL REVIEW D 101, 052014 (2020)

Improved search for two body muon decay $\mu^+ \rightarrow e^+ X_H$

Many exotic searches performed by the PIENU collaboration : e.g. sterile neutrinos which have implications for leptogenesis

Search for three body pion decays $\pi^+ \rightarrow l^+ \nu X$

• Pion branching ratio is sensitive to new physics at high mass scales: "power" of high precision low energy exp.

PIONEER PHASE 1 goal: 0.01 % measurement $\rightarrow \Lambda_{\rho P} \sim 3000 \text{ TeV}$

Marciano...

PHYSICAL REVIEW D 97, 072012 (2018)

Editors' Suggestion

Improved search for heavy neutrinos in the decay $\pi \rightarrow e\nu$

PHYSICAL REVIEW D 102, 012001 (2020)

Search for the rare decays $\pi^+ \rightarrow \mu^+ \nu_\mu \nu \bar{\nu}$ and $\pi^+ \rightarrow e^+ \nu_e \nu \bar{\nu}$

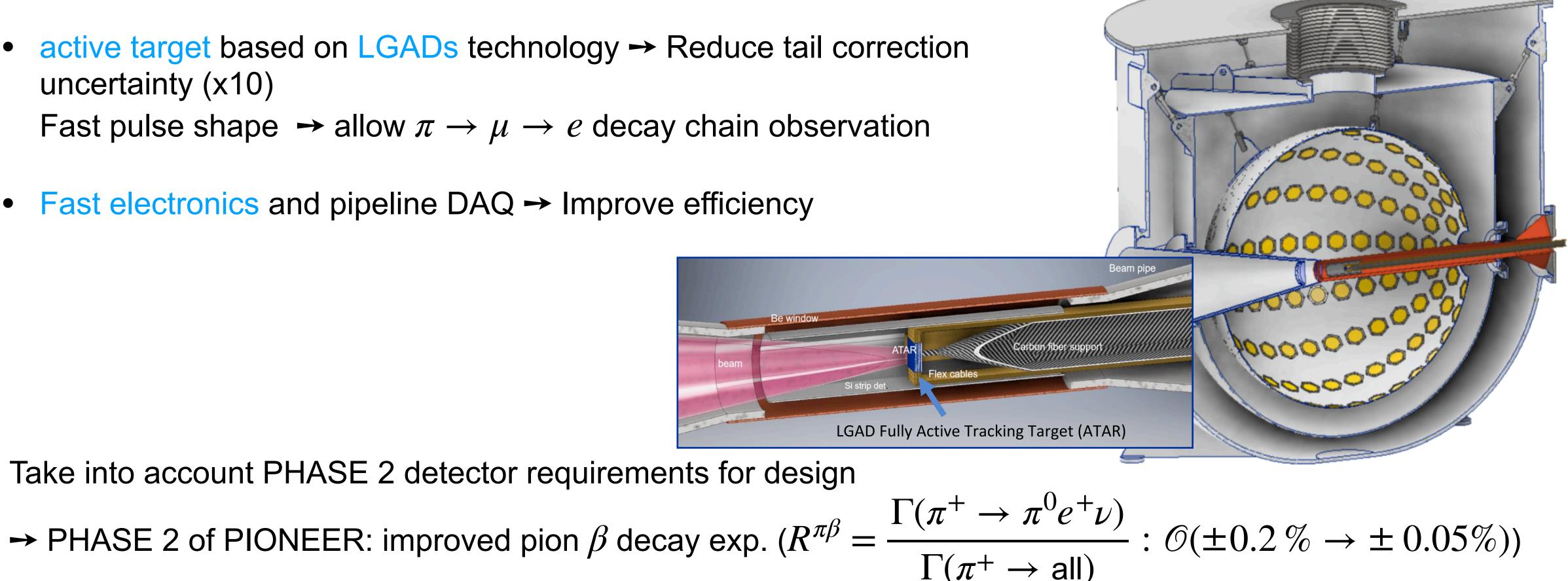
PHYSICAL REVIEW D 103, 052006 (2021)

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletk

Search for heavy neutrinos in $\pi \rightarrow \mu \nu$ decay



PIONEER DETECTOR CONCEPT

- Building on previous experiences (PIENU and PEN/PIBETA) : use of emerging technologies (LXe, LGADs)
 - $3\pi \operatorname{sr} \operatorname{calorimeter} \rightarrow \operatorname{Reduce}$ tail corrections (x5) \rightarrow Improve uniformity (x5) • $25 X_0$, Fast scintillator response (LXe) \rightarrow Reduce pile-up uncertainties (x5)
 - active target based on LGADs technology -> Reduce tail correction uncertainty (x10) Fast pulse shape \rightarrow allow $\pi \rightarrow \mu \rightarrow e$ decay chain observation
 - Fast electronics and pipeline DAQ \rightarrow Improve efficiency

Take into account PHASE 2 detector requirements for design

HISTORY

- PIENU stopped data taking 10 years ago at TRIUMF
- PIONEER (PIENUX) LOI : Proposal to TRIUMF-EEC in March 2021 → endorsed with high priority. Reviewed by PPAC in June 2021. Gate0 not granted: new beamline construction required for PIONEER not in line with TRIUMF long-term beamline refurbishment plans
- October 2021: submission of NSERC 1 year DG funding proposal to support initial PIONEER R&D on calorimeter (simulations & SiPM tests) : outcome should be known soon
- Full experimental proposal to PSI in January 2022 (https://arxiv.org/pdf/2203.01981.pdf) -> accepted with high priority
- SNOMASS White paper: https://arxiv.org/abs/2203.05505
- First beamtime scheduled in May 2022 at PSI (beam characterization)

5-YEARS PERSPECTIVE

- TRIUMF Rare Decay group activities
 - D. Bryman PIONEER co-spokerson, C. Malbrunot on publication & talk committee (PIONEER) organizational chart & boards etc in development) on-going and planned simulation efforts (ML, GPUs) by TRIUMF postdocs and staff
- from MEG?)

LXe favoured contender (synergies with other activities at TRIUMF, see slide 9) but several question marks and open questions requiring large simulation effort, R&D and prototyping

PIONEER cost estimate (~26 M\$. Largest share taken by the calorimeter - 20M\$)

PIONEER timeline (assuming approval stages and external funding decisions are positive and proceed expeditiously)

properties tes 2022	at PSI. 2023	decisions. 2024	2025
make R&D requests to funding agencies (US, Japan, Europe, Canada); initiate first lab tests of prototype devices; perform simulations and further develop the experiment design; beam		detector prototype development and test beam measurements; technical design report; funding	Full-sca sub-syst subsyste
make R&D red	nuests to funding	Beamline studies,	

Canadian group strongly involved in PIONEER - continuity and complementarity with current and past

Prospect: With experiment taking place at PSI, the Canadian group should provide leadership on detectors Proposal : Canadian group takes on the "calorimeter" thread (with participation of Japanese colleagues

ale production of detectors, electronics, DAQ stems; short physics integration runs of available tems.

PIONEER engineering run and first physics production.

2026

INFRASTRUCTURE & WORKFORCE NEEDS AT TRIUME

- Taking on the calorimeter thread: \bullet
 - in view of next round of CFI grant request
 - data while PIONEER in the R&D phase]
 - Require technical support from TRIUMF in cryogenics, machine shop etc

 - Further identify and use synergies with existing TRIUMF efforts lacksquare
- \bullet

• Build a strong Canadian group (so far TRIUMF-centred) with international collaborators from PIONEER

• 2022: apply for 3-years NSERC Project grant to develop R&D and simulations: request for several postdocs and grad-students [embedded in the rare decay group at TRIUMF to have access to physics

Development of (or use of MEG's) small LXe prototype to be hosted in existing lab space (MOB #149?)

Use of TRIUMF accelerator facility : detector tests and commissioning, measurements of pion lifetime

SYNERGIES

- Sciences goals fit into current activities of the rare decay group at TRIUMF (NA62, PIENU)
- Envision use of common existing facilities (e.g., LoLX, Vera), development of new ones...
- Synergies with Silicon detector developments for NA62, ATLAS etc (LGADs, SiPM, strips)
- Geant4 simulations: lacksquare
 - optical tracking (GPU-based): synergies with DarkLight, nEXO efforts
- \bullet Developing New Directions in Fundamental Physics)

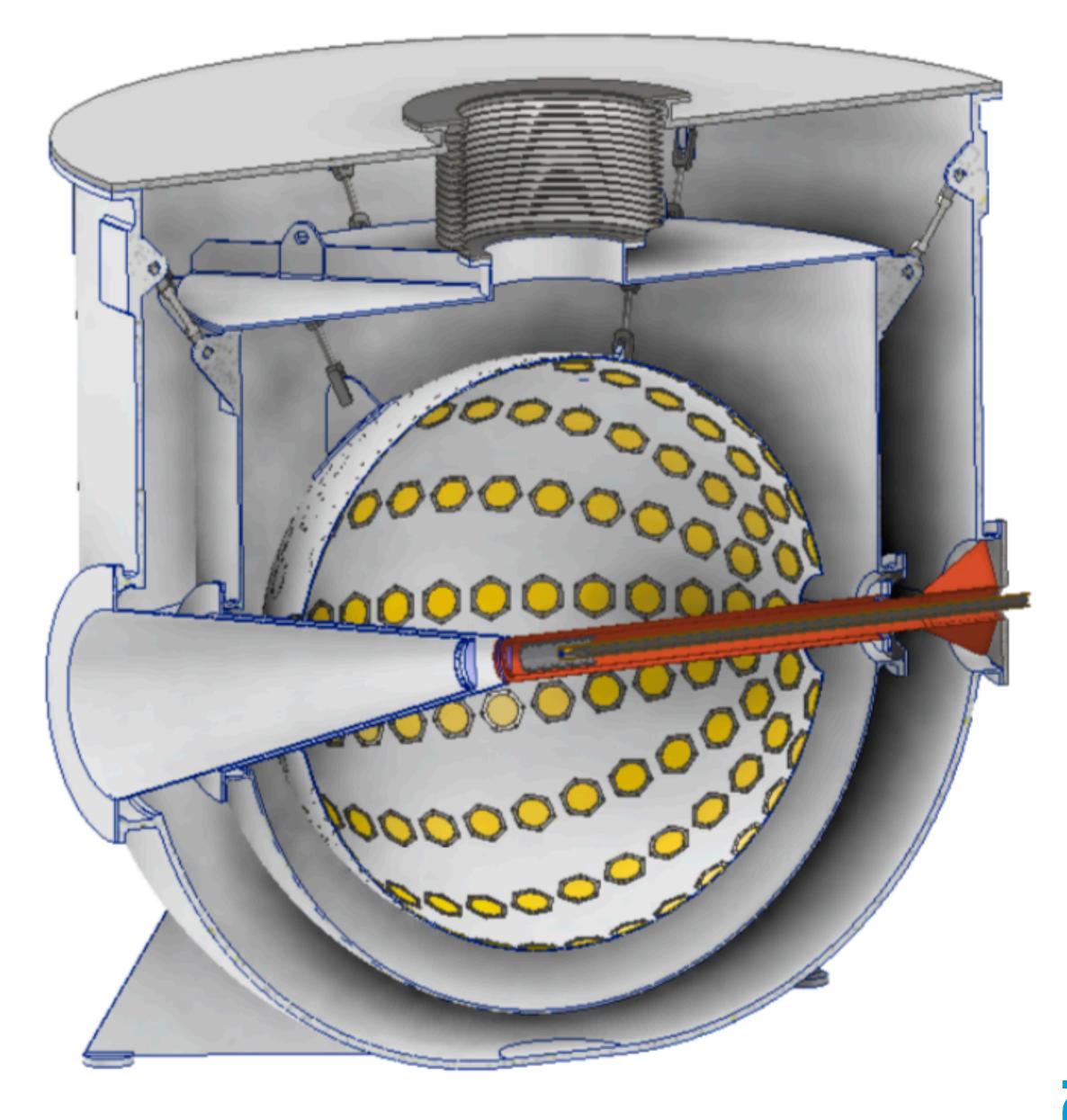
• Large technological overlap with nEXO developments - LXe technology, VUV photon readout

• Analysis (of sim data) based on Machine learning algorithms: synergies with other efforts at TRIUMF

International collaboration - strong network - including with "nearby" CENPA (cf DND workshop series:

SUMMARY

- science program
- time-scale: 10-15 years
- 2-body spectra very sensitive to a wide range of exotics \bullet
- from NA62, MEG, muon g-2, ATLAS, PSI scientists and leading theorists
- Canadian group aims at leading calorimeter design & construction
- strong detector synergy with other TRIUMF experimental efforts (including nEXO)


major new experiment addressing emerging SM anomalies in flavor physics: augmenting the TRIUMF

unique new information on Lepton Flavor Universality and CKM unitary with unprecedented precision

supported by a large, experienced international collaboration. The group includes new TRIUMF BAEs, experts from previous PIENU and PEN experiments as well as a wide range of international collaborators

Thank you Merci

