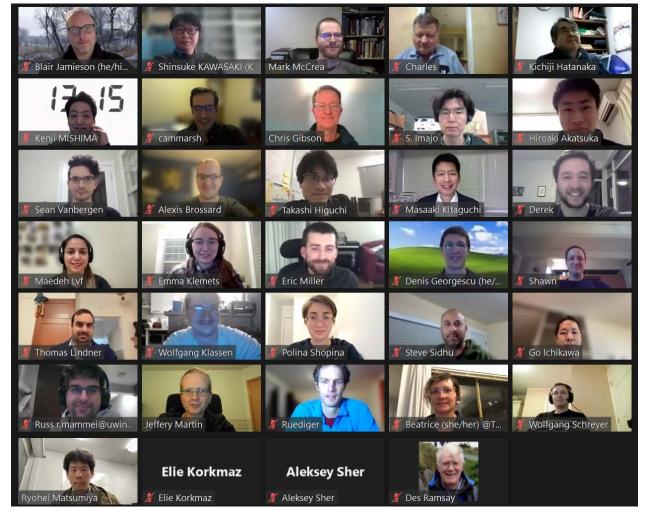
%TRIUMF

TUCAN 2025-2030

R. Picker for the TUCAN collaboration

-

Non-Bergerst


2022-04-04

TUCAN collaboration and goals

∂ TRIUMF

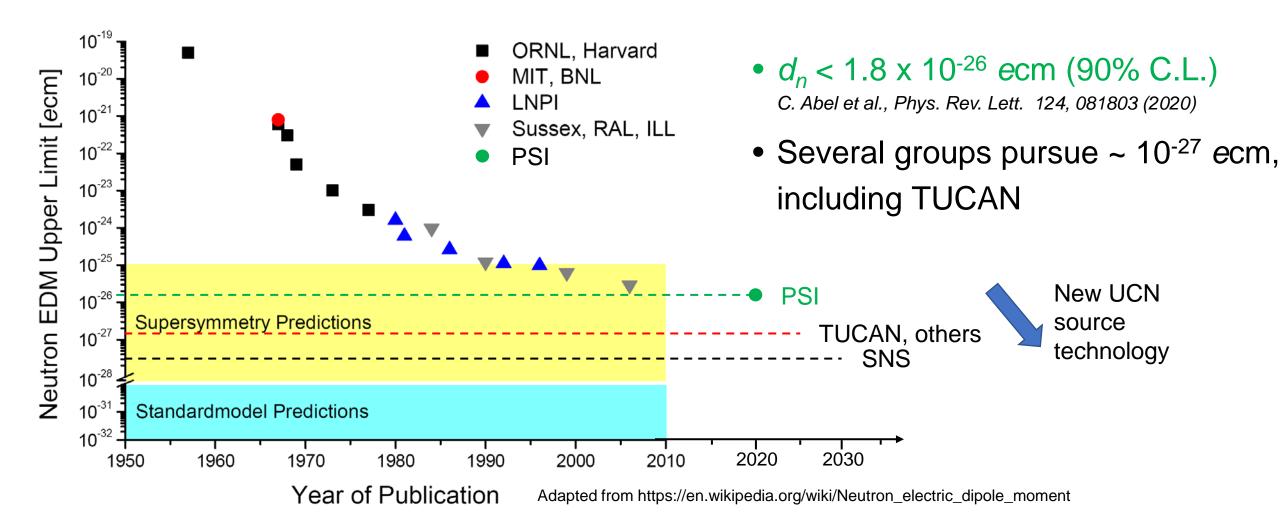
TRIUMF UltraCold Advanced Neutron Collaboration

Jan. 2022 virtual collaboration meeting

TUCAN collaboration goals:

- 1. Create the world's strongest ultracold neutron source.
- 2. Search for a neutron electric dipole moment with a sensitivity of $10^{-27} e \text{ cm} (1-\sigma)$ in 400 beam days.
- 3. Create an international user facility for fundamental research using ultracold neutrons.

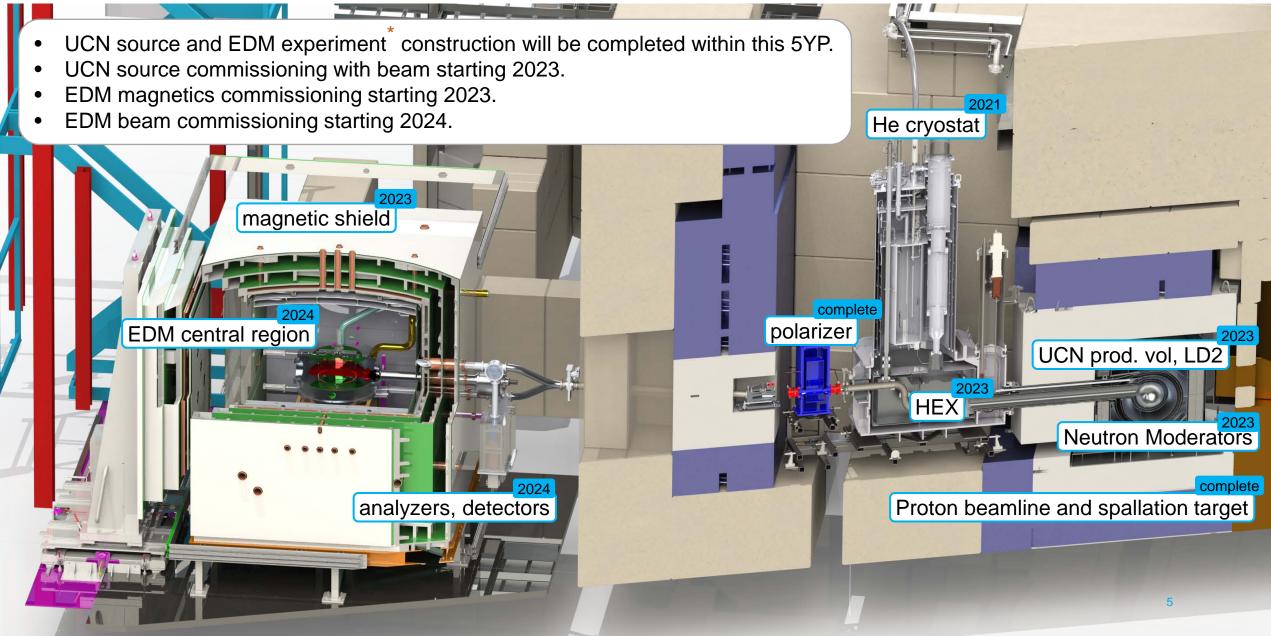
H. Akatsuka¹, C. Bidinosti², C. Davis³, B. Franke^{3,4}, D. Fujimoto³, M. Gericke⁵, P. Giampa⁶, R. Golub⁷, S. Hansen-Romu^{5,2}, K. Hatanaka^{8,*}, T. Higuchi⁸, G. Ichikawa⁹, S. Imajo⁸, B. Jamieson², S. Kawasaki⁹, M. Kitaguchi¹, W. Klassen^{4,5,2}, E. Klemets⁴, A. Konaka^{3,10}, E. Korkmaz¹¹, E. Korobkina⁷, F. Kuchler³, M. Lavvaf^{5,2}, T. Lindner^{3,2}, K. Madison⁴, Y. Makida⁹, J. Mammei⁵, R. Mammei^{2,3}, J. Martin^{2,*}, R. Matsumiya³, M. McCrea², E. Miller⁴, K. Mishima⁹, T. Momose⁴, T. Okamura⁹, H.J. Ong⁸, R. Picker^{3,12}, W.D. Ramsay³, W. Schreyer³, A. Sher³, H. Shimizu¹, S. Sidhu¹², S. Stargardter^{5,2}, I. Tanihata⁷, S. Vanbergen⁴, W.T.H. van Oers^{5,3}, Y. Watanabe⁹


¹Nagoya University, ²The University of Winnipeg, ³TRIUMF,
⁴The University of British Columbia, ⁵University of Manitoba, ⁶SNOLAB,
⁷North Carolina State University, ⁸RCNP Osaka, ⁹KEK,
¹⁰Osaka University, ¹¹University of Northern BC, ¹²Simon Fraser University

*cospokespersons (K. Hatanaka and J. Martin)

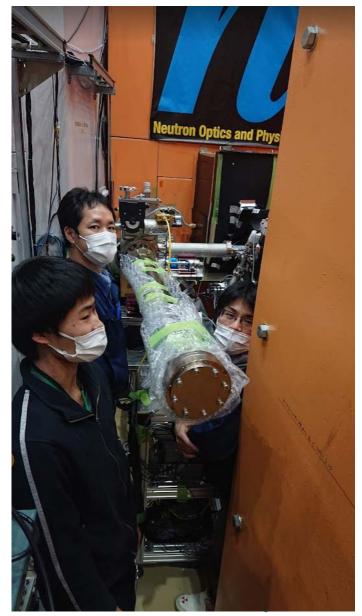
- EDM experiments essentially search for sources of CP violation beyond the standard model.
- Lowering EDM limits seriously restricts BSM theories.

Why should we have an edge? Density!



Experiment	ILL	PSI nEDM	PSI n2EDM*	TUCAN**
UCN detected per cycle	14 000	15 000	121 000	1 600 000
Size	20	20	116	63 I
Density detected	0.7	0.75	1	26
	$\frac{1}{2}$ to $\frac{1}{4}$ compared to expectations			ected, based on PSI nEDM. ected, extensive MC.

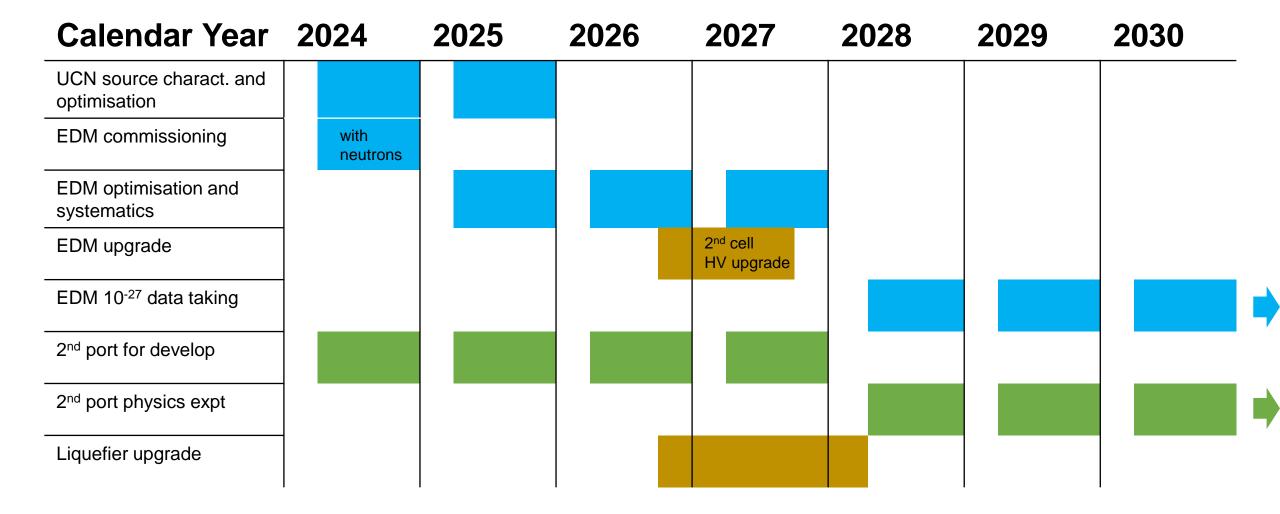
Main ingredients and status



*: Budget constraints require some descoping

∂ TRIUMF

- Cost increases due to labour overages and pandemic price increases will require to descope some EDM features to a future funding request.
- Detailed planning just ongoing, will be completed by standing External Advisory Committee (EAC) review in May.
- Scope reduction could reach from just performing Ramsey cycles with UCN to only finding cost savings.
- Most promising option at the moment: HV at 50 % and using 1 cell instead of 2 saves significant budget, reduced sensitivity reach by a factor of 3 but allows to commission and thoroughly test all systems.
- New funding from JSPS and/or CFI during next rounds.



UCN tests at J-PARC BL05, 2021

TUCAN plans 5YP 2025-2030

∂ TRIUMF

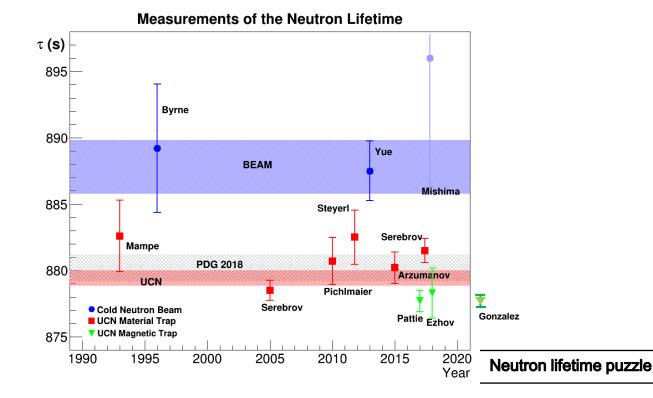
Requirements for executing this plan

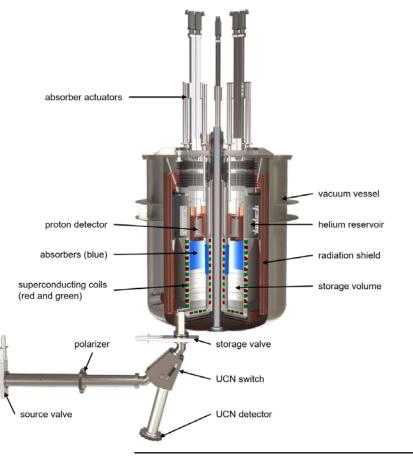
Equipment and costs

Human resources

- UCN source
 - commissioning will show validity of most of our choices
 - possible upgrade \$1M
- EDM experiment
 - descoped components \$1M
- Liquefier
 - current liquefier does not allow full duty cycle
 - commissioning and proving source ok
 - upgrade required for EDM statistics runs \$3M-\$5M

- need additional BAE or P&S
 - source, EDM and 2nd port cannot be handled by 2 BAEs
- technician
 - required for all three above
 - paid from CFI as possible
- project engineer
 - needed for source, liquefier and EDM upgrades


Synergies possible with HAICU and Center for Quantum/AMO/precision: cryogenics, magnetic fields, spin gymnastics

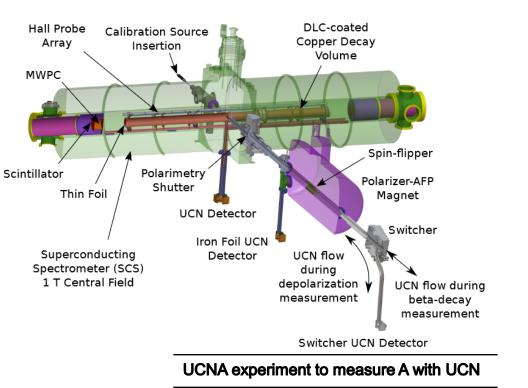


UCN experiments for 2nd port

- At first: 2nd port will be used for source characterization and component testing for EDM
- neutron lifetime experiment
 - large discrepancy between beam and bottle measurements
 - discussion about possible addition dark decay channel largely resolved => systematic effect?
 - collaboration with PENeLOPE exists, could move to TRIUMF

PENeLOPE neutron lifetime experiment

UCN experiments for 2nd port


∂ TRIUMF

- At first: 2nd port will be used for source characterization and component testing for EDM
- neutron lifetime experiment
 - large discrepancy between beam and bottle measurements
 - discussion about possible addition decay channel (dark matter?)
 - collaboration with PENeLOPE exists, could move to TRIUMF
- neutron decay expts.
 - e.g. A, the correlation between the electron momentum and the initial spin of the n tron in neutron β -decay $-2(\lambda^2 |\lambda|)$

$$A_0 = \frac{-2(\lambda^2 - |\lambda|)}{1 + 3\lambda^2}, \quad \lambda \equiv \frac{g_\lambda}{g_V}$$

- together with neutron lifetime can obtain $V_{\mbox{\scriptsize ud}}$, the first CKM matrix element

$$|V_{\rm ud}|^2 \tau_n (1 + 3g_A^2) = 4908.6(1.9) \, \mathrm{s},$$

UCN experiments for 2nd port

RIUMF

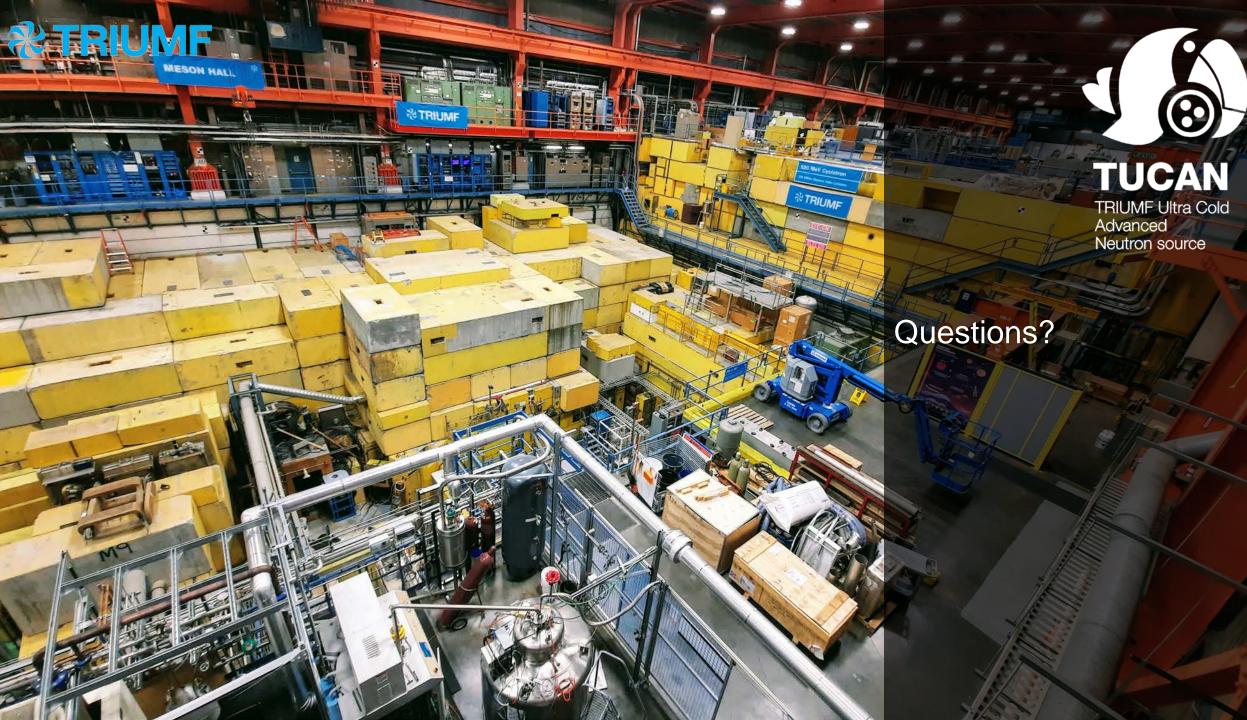
- At first: 2nd port will be used for source characterization and component testing for EDM
- neutron lifetime experiment
 - large discrepancy between beam and bottle measurements
 - discussion about possible addition decay channel (dark matter?)
 - collaboration with PENeLOPE exists, could move to TRIUMF
- neutron decay expts.
 - e.g. A, the correlation between the electron momentum and the initial spin of the neutron in neutron β -decay $-2(\lambda^2 |\lambda|)$

$$A_0 = \frac{-2(\lambda^2 - |\lambda|)}{1 + 3\lambda^2}, \quad \lambda \equiv \frac{g_A}{g_V}$$

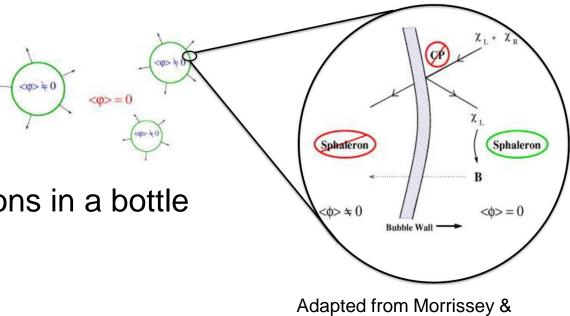
- together with neutron lifetime can obtain $V_{\mbox{\tiny ud}}$ the first CKM matrix element

$$|V_{\rm ud}|^2 \tau_n (1+3g_A^2) = 4908.6(1.9) \, {\rm s},$$

- gravitational experiments with UCN
 - can determine the wavefunction of the neutron in the gravitational potential very precisely
 - allow putting constraints on non-Newtonian gravity distances of $\mu m,$ and thus Axions or Chameleons
- These are mostly **statistics limited**, so higher UCN densities will boost the sensitivity reaches but also allow to explore new experimental ideas.


© ecliptique laurent thion

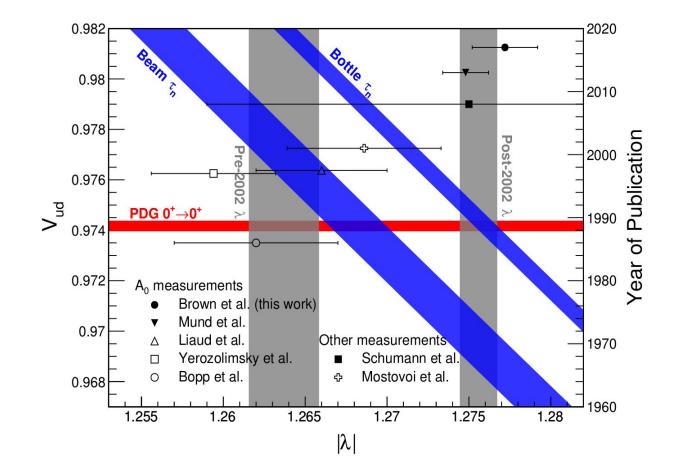
Qbounce @ ILL


- UCN source and (descoped) EDM experiment construction will be completed during this 5YP.
- **Beginning of next 5YP** dedicated to **optimizing** source and EDM experiment.
- Later half of 5YP shall allow full duty cycle and therefore statistics runs and PP experiment at 2nd port.
- External funding and TRIUMF matching required to execute plan.
- Physics, technical and engineering human resources required.

% TRIUMF

- Search for new sources of CP violation beyond the standard model.
- Motivated by:
 - New physics for electroweak baryogenesis
 - SUSY CP problem / new TeV-scale physics
 - Strong CP problem / Peccei-Quinn, axions
 - Other new physics scenarios
- Spin precession frequency of ultracold neutrons in a bottle

Adapted from Morrissey & Ramsey-Musolf New J. Phys. 2012


COLONE OF AN EXPERIMENTS (please don't quote numbers from here...)

Bolid Means achieved!	RAL SUSSEX ILL (Grenoble, FR)	PSI (Villigen, CH)		PanEDM TUM ILL (Grenoble, FR ⇒ Munich, DE)		LANL EDM (Los Alamos, US)	SNS EDM (Oakridge, US)	PNPI ILL (Grenoble, FR ⇒ Gatchina, RU)		TUCAN TRIUMF (Vancouver, CA)
temperature	RT	RT		RT	RT (cryo)	RT	0.7 K	RT		RT
comag	Hg	Hg		none			³ He	none		Hg
source	reactor, turbine	spall., sD ₂		reactor, cold neutrons, ⁴ He		D2	spall, internal ⁴ He	reactor, turbine, ⁴ He		spall., ⁴He
nr of cells	1	1	2	2			2	2	>2	2
Cell size [l]	20	20	2 x 75	2 x 17		2 x 20	2 x 3.2	2 x 20?		2 x 31
[UCN/cc] at T=0	2	3	5	4	40	40	125	4	104	233
goal [e⋅cm]	3·10 ⁻²⁶	1.8·10 ⁻²⁶	1·10 ⁻²⁷	4·10 ⁻²⁷	8·10 ⁻²⁸	1·10 ⁻²⁷	2-5·10 ⁻²⁸	5·10 ⁻²⁶	5·10 ⁻²⁸	1.7·10 ⁻²⁷
date	2006	2020	2020	2019	?	2021	2023	2015	202?	2024
status	done!	done!	Big infrastru cture installed.	modifications for Munich \Rightarrow ILL, D ₂ \Rightarrow He		Magnetic shield isntalled, UCN storage tested.	Critical Component Demonstration passed	PNPI source components ready, reactor offline.		Component development phase
comment	Best limit so far!	More UCN density expected from source, compensating with cell size.		regulatory issues for UCN source in Munich \Rightarrow ILL for now			great new concept, high risk, high gain	Very promising UCN source design.		Best nEDM experiment in Canada!

TUCAN

GRS results and impact

© ecliptique laurent thion

Chameleons

dark energy candidates

$$V_{\rm eff} = V(\Phi, \mathbf{n}) + e^{\mathbf{\beta}\Phi/M'_{\rm Pl}}\rho.$$

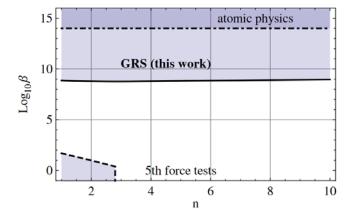


FIG. 3 (color online). Exclusion plot for chameleon fields (95% confidence level). Our newly derived limits (solid line) are 5 orders of magnitude lower than the upper bound from precision tests of atomic spectra (dot-dashed line) [27]. Pendulum experiments [28] provide a lower bound (dashed line).

Axions

dark matter candidates

$$V(\vec{r}) = \hbar^2 g_s g_p \frac{\vec{\sigma} \cdot \vec{r}}{8\pi m_M r} \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}.$$

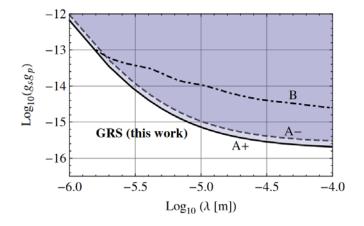


FIG. 4 (color online). Limits on the pseudoscalar coupling of axions (95% confidence level). Our limit for a repulsive (attractive) coupling is shown in a solid (dashed) line marked with A + (A-). The limits are a factor of 30 more precise than the previous ones derived from a direct measurement at the micron length scale [29] derived from our previous experiment with UCN marked B [13,14].