


SuperCDMS and CUTE Perspective for the 2025-2030 5-Year Plan W. Rau



### SuperCDMS

- Direct dark matter search with cryogenic Ge and Si detectors
- Focus on low-mass DM: few GeV range, with sensitivity down to eV range for certain types of DM
- Presently under construction at SNOLAB
- Start of science operations anticipated for 2023
- Expected to run for ~5 years; for analyses probably +2-3 years
- Several possible upgrade paths are being discussed, improving sensitivity or lowering mass range (arXiv: 2203.08463)
- Likely time scale for upgrades ~2025-2030, but no concrete plans exist so far



# SuperCDMS upgrades

Some examples of sensitivity projections for possible upgrades

10<sup>-8</sup>

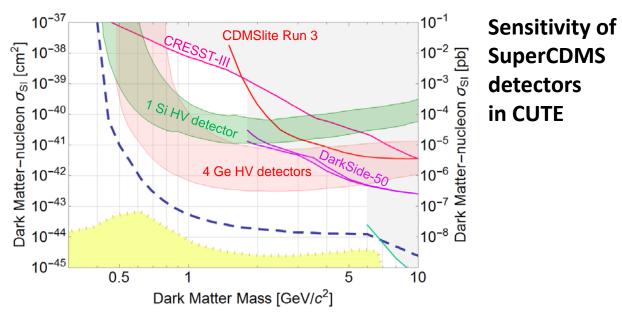
 $\overline{0}$  1

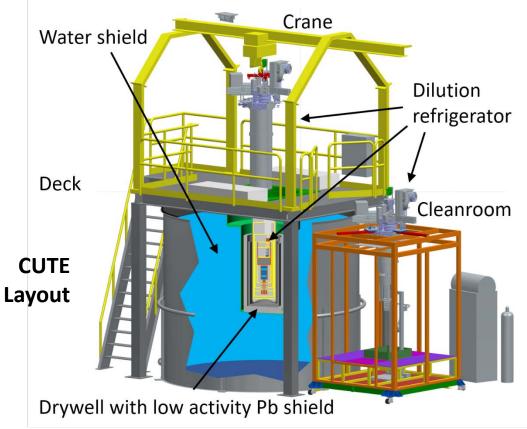
**DM-nucleon scattering** 

SUPER

(mostly improved/modified detectors; from arXiv: 2203.08463) 10-4 10 Dark Matter-nucleon σ<sub>SI</sub> [cm<sup>2</sup>] 10 01 01 01 10<sup>-5</sup> gd 10-42 10<sup>-6</sup> **Axion-like particles** 10<sup>-43</sup> 10-7 Dark Matter 10-8 10<sup>-8</sup> 10<sup>-9</sup> 10<sup>-9</sup> 10 Axion coupling *g*<sub>ae</sub> 10<sup>-10</sup> 10<sup>-11</sup> 10<sup>-12</sup> 10-46 0.1 10 Dark Matter Mass [GeV/c<sup>2</sup>] Purple shaded: background from solar neutrinos 10-13 10-14 Different choice of detectors 0.001 0.01 Axion Mass [keV/c2] could also close this gap

Yellow bar: hint from stellar cooling

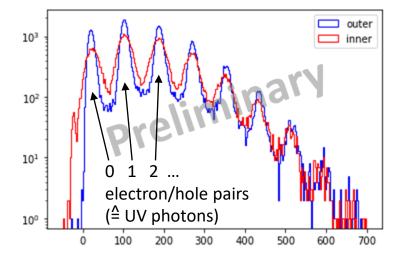

**DM-electron scattering** (heavy mediator) 10-33  $10^{3}$ 10-34 10<sup>2</sup> <sup>2</sup> 10<sup>-35</sup> الم الم الم الم الم 10<sup>1</sup> electron  $\overline{\sigma}_{\theta}$  [pb] 10<sup>0</sup> 10-37 electron 10-1 10<sup>-38</sup>⊧ 10-2 10<sup>-9</sup> Dark Watter Dark Dark <sup>4-</sup>01 10-39 Mattel 10 10<sup>-10</sup> <sup>98</sup> 10<sup>-11</sup> 10<sup>-11</sup> 9 4xion coupling 9 10<sup>-12</sup> 10<sup>-12</sup> 4**10<sup>-10</sup>** Dark | 10-4 10-6 <sup>⊲</sup>10<sup>-11</sup> 10 10 100 10 Dark Matter Mass [MeV/c<sup>2</sup>] Purple lines: different DM models 10-13 Dark blue: SuperCDMS expected


Light blue: Technology in hand Grey blue: Some R&D needed Lines: different detector types



#### CUTE

- Cryogenic detector test facility at SNOLAB, developed for SuperCDMS
- Low background (though much higher than SuperCDMS), low noise: can be used for science
- Will become SNOLAB user facility, available for the community (probably some time in 2023)
- Interest expressed e.g. by other DM search experiments (SPICE/HeRALD/TESSERACT) and cryogenic Q-Bit project
- We may get involved in any future CUTE projects






# **%TRIUMF**

### Local Work

- Cryogenic detector test facility (unshielded) in MOB (W. Rau's group)
  - Detector characterization
  - Trouble shooting of readout electronics
  - Development and testing of new calibration schemes
  - Testing of new hardware components
  - •
- DAQ development / testing for SuperCDMS (S. Oser's group)
- General support for SuperCDMS and CUTE (both groups)
  - Detector / facility operation
  - Data analysis
  - Data processing
  - Sensitivity projections
  - .
- Future
  - Continue the present work
  - Support R&D work for SuperCDMS upgrades and CUTE



Individual photons from UV LED@30 mK with a SuperCDMS HVeV detector

SuperCDMS DAQ testing at TRIUMF