Theory of Dark Photons and Dark Sectors

David McKeen **EXAMPLE ARIEL Science** Workshop July 18, 2018

%TRIUMF

The Standard Model works!

%TRIUMF

But there are issues...

scale M

Can generally parametrize new effects in terms of coupling and energy/distance⁻¹ scale

scale M

Can generally parametrize new effects in terms of coupling and energy/distance⁻¹ scale

scale M

scale M

scale M

scale M

scale M

Can generally parametrize new effects in terms of coupling and energy/distance⁻¹ scale

scale M

How do you couple light stuff "at the frontier" without disturbing the success of the SM?

Standard Model gauge symmetries/ forces & particle content:

L

H

$$EWSB$$

$$SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y} \to SU(3)_{c} \times U(1)_{em}$$

$$G^{a}_{\mu}, W^{b}_{\mu}, B_{\mu} \to G^{a}_{\mu}, A_{\mu}$$

$$= \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix}, e_{R}$$

$$= \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix}, u_{R}, d_{R}$$

$$\times 3$$

$$= \begin{pmatrix} \rho^{+} \\ v+h+\rho^{0} \end{pmatrix}$$

TRIUMFBuilding a Dark Sector

A dark sector is uncharged under SM forces: strong, weak, E&M

But can be connected via a "portal" - mixing with SM particles

- photon—coupling proportional to SM particle electric charge
- Higgs boson—coupling proportional to SM particle mass
- Neutrinos—couplings only via weak interactions

TRIUMFBuilding a Dark Sector

A dark sector is uncharged under SM forces: strong, weak, E&M

But can be connected via a "portal" - mixing with SM particles

- photon—coupling proportional to SM particle electric charge
- Higgs boson—coupling proportional to SM particle mass
- Neutrinos—couplings only via weak interactions

Vector Portal

Increased interest in this possibility beginning about 10 years ago

Also astrophysical motivations (Pospelov & Ritz; Arkani-Hamed, Finkbeiner, Slatyer, & Weiner)

TRIUMF Vector Portal Today

Huge amount of progress since 2008...

TRIUMF Vector Portal Today

Huge amount of progress since 2008...

*** TRIUMF** Vector Portal Today

Huge amount of progress since 2008...

m (MeV)

Vector Portal Today

This has become a very mature field

There are a number of proposed experiments aimed at searching

John Behr will talk later about opportunities with ARIEL e- linac

This is very minimal—does the situation change if the dark sector is (even slightly) more complicated?

A Richer Dark Sector

There could also be new matter charged under the U(1)' in the dark sector

Phenomenology can be quite different, see e.g. Forestell, Morrissey, & Sigurdson; Morrissey & Spray, ...

These ideas could be related to weak scale mysteries: see e.g. "Hidden Valleys": Strassler & Zurek; "Twin Higgs": Chacko, Harnik, Goh, ...

Just as in our sector, dark sector could contain stable states

⇒Dark matter?

TRIUMF

Vector Portal to DM

In addition to kinetic mixing with photon, couple dark photon to dark matter

E137 study Batell, Essig, Surujon [1406.2698]

 $\mathcal{L} \supset -g_D A'_\mu \bar{\chi} \gamma^\mu \chi$

Allows for light dark matter to annihilate efficiently (avoid Lee-Weinberg bound)

Dark photon decays now decays invisibly to DM—visible decay probes diminished—and signature at beam dumps is changed—DM scatters in detector

*** TRIUMF**

Vector Portal to DM

MiniBooNE 1702.02688 (PRL)

Can also search at proton beam dumps, i.e. accelerator neutrino experiments such as MiniBooNE

 e^+

At B-factories like BaBar:

 10^{-1}

 $m_{A'}, GeV$

1

 $\bigwedge A' \to \text{inv.}$

BaBar

 10^{-2} E787, E949 NA64 electron beam dump into aactive target & search for a_{μ} favored 10^{-3} missing energy NA64 1710.00971 (PRD) e-Dark Α' e- 10^{-4} NA64 Sector Ζ 10^{-5} 10^{-3} 10^{-2}

10

Vector Portal to DM

Qualitatively different phenomenology from minimal case

Could directly connect to major issue from cosmology and astrophysics: dark matter

Luca Doria's talk next will describe possibilities with e- at ARIEL

Ongoing, active area of research

Wrap Up

The standard model is successful but has some shortcomings

Answers could come at low energy scales and small couplings—"portals" are helpful here

I only described one fairly simple "portal," others (Higgs, neutrino,...) exist and are interesting

Ongoing, active area of research

Back Up

Other Portals

Portals: couplings via stuff uncharged w.r.t. SM

Leads to minimal difficulties incorporating hidden sectors

TRIUMF Minimal Vector Portal Okur Galis Details

Okun '82 Galison & Manohar '84 Holdom '86

New interaction is
$$\mathcal{L} \supset \frac{\epsilon}{2\cos\theta_{\rm W}} B^{\mu\nu} F'_{\mu\nu} \rightarrow \frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu}$$

From, e.g., heavy particle charged under hypercharge/E&M and U(1)'

$$B_{\mu} \swarrow \begin{pmatrix} g' & g_D \\ \psi \end{pmatrix} \swarrow A'_{\mu}$$

$$M_{\psi} = M$$

Diagonalized by $A \to A + \epsilon A'$

Charged SM particles couple to A' with strength proportional to ϵ

$$\mathcal{L} \supset -\epsilon e A'_{\mu} (\bar{e} \gamma^{\mu} e + \bar{\mu} \gamma^{\mu} \mu + \dots)$$

A'decays to (kinematically allowed) charged particles

$$A' \rightarrow e^+ e^-, \mu^+ \mu^-, \pi^+ \pi^-$$

Higgs Portal

Portal coupling: $\mathcal{L} \supset A |H|^2 S \Rightarrow \mathcal{L}_{eff} = \frac{1}{2} (\partial_\mu S)^2 - \frac{1}{2} m_S^2 S^2 + \xi_\psi \sum_i \frac{m_\psi}{v} \bar{\psi} \psi$

Coupling now proportional to particle mass

Higgs Portal

A UV completion involves lepton-specific 2HDM

(See Chen, Davoudiasl, Marciano, Zheng for a different UV completion)

Residual FCNC in quark sector

$$\mathcal{L} \supset \left[A_{11} H_1^{\dagger} H_1 + A_{22} H_2^{\dagger} H_2 + A_{12} \left(H_1^{\dagger} H_2 + H_2^{\dagger} H_1 \right) \right] \varphi$$
$$- \left(\bar{L} Y_e H_1 e_R + \bar{Q} Y_d H_2 d_R + \bar{Q} Y_u \tilde{H}_2 u_R + \text{h.c.} \right)$$

Neutrino Portal

Sterile neutrino is a "dark sector" state that mixes with neutrino

$$-\mathcal{L} \supset y\overline{L}HN + h.c.$$

Two mixings generate neutrino mass:

We may have already discovered that Nature has chosen to use this portal

Neutrino portal to DM requires more complicated dark sector to keep DM stable

$$-\mathscr{L}_{eff} \supset \frac{1}{\Lambda} \overline{L} H \phi \chi + h.c.$$
Conserved charge keeps lighter one stable