※TRIUMF

50 anniversay

Meson Hall 1974－1979

Ryugo Hayano
UTokyo 東京太学
July 17， 2018

500 MeV
December 15, 1974 \downarrow

TRIUMF

ANNUAL REPORT
1974

Hayano, PhD
March 29, 1979
\downarrow

TRIUMF

SCIENTIFIC ACTIVITIES

山A-Hour per year, 1975-1979

TRIUMF "Meson Factory"

$500 \mathrm{MeV} p+\mathrm{A} \rightarrow \pi^{ \pm}+X$
 \downarrow

$\pi \rightarrow \underset{\uparrow}{\mu} v$
Alesen Lepton

PhD，March 29， $1979 \leftarrow$ The FIRST TRIUMF PhD

＂Spin fluctuations of itinerant electrons in MnSi studied by muon spin rotation and relaxation＂

著者（漢字）	早野，龍五－Hayano，Ryugo
著者（英字）	
著者（カナ）	ハヤノ，リュウゴ
標題（和）	ミュオンスピン回転法及び緩和法による MnSi 中の遍歴電子のスピンのゆらぎの研究
標題（洋）	Spin Fluctuations of Itinerant Electrons in MnSi Studied by Muon Spin Rotation and Relexation
報告番号	104747
㪕告番号	甲04747
学位授与月	1979．03．29

$\mu \rightarrow e$ decay asymmetry (Parity violation)

$\mathrm{T}_{\mu}=2.2 \mu \mathrm{~s}$

Transverse field μ SR (spin rotation/precession)

μ SR (Spin Relaxation)

A part of my thesis,
"muon spin RELAXATION"
was published in Phys. Rev. B in 1979

Zero- and low-field spin relaxation studied by positive muons
R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, and R. Kubo Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo, Japan
and TRIUMF, Vancouver, Canada
(Received 27 February 1979)

After 1979-

- KEK, BNL, ...
- U-Tokyo Professor
- CERN "ASACUSA" (antimatter) leader
- Radiological protection in Fukushima
- U-Tokyo Emeritus
- Suzuki-method president

After 1979-

- KEK, BNL, ...
- U-Tokyo Professor
- CERN "ASACUSA" (antimatter) leader
- Radiological protection in Fukushima
- U-Tokyo Emeritus
- Suzuki-method president

1974
 Apr-Nov

RELATIVISTIC EFFECT ON MAGNETIC MOMENTS OF NEGATIVE MUONS BOUND TO HIGH-Z NUCLEI
T. Yamazaki, S. Nagamiya, O. Hashimoto,
K. Nagamine, K. Nakai, K. Sugimoto and K. M. Crowe

March 1974

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

RECEIVルー LAWRENCE radiation laboratory

APR 51974
LIBRARY ANO DOCUNENTS SECTION

Toshi Yamazaki 1934-

U Tokyo Institute of Medical Science (Cyclotron bldg)

Fall 1974

https://commons.lbl.gov/

184" cyclotron

https://commons.Ibl.gov/

Ken Crowe, 1926-2012
http://newscenter.Ibl.gov/ 2012/03/13/ken-crowe/

November 1974

December 1974 LBL \rightarrow TRIUMF

Annual report 1974
MeV

Dec 15, 1974

Jan 1975, I turned 23

From 1974 annual report

Prof. T. Yamazaki and Dr. K. Nagamine, University of Tokyo, as well as two graduate students (R. Hayano and N. Nishida) are spending the 74/75 academic year at TRIUMF. They have contributed generously to the budding μ SR programme here.

In addition, the Tokyo group has made a major financial contribution through the Toray Foundation, and TRIUMF is indeed grateful for their support.

Annual report 1974

The core of the μ SR data acquisition system DAS is a PDP-11/40 based GT44
(Graphics) computer
system, with 64k of memory,
 two large discs (1.2M words each), magnetic tape and a 17 in. CRT,

$\leftarrow \rightarrow$
$\leftarrow-\cdots$

HEIGHT HLTI TLIR DISTHN: FLIEL LE WEI SHT THRLST ANGLE CEE I EL

ET
HRN CL
CEN HCl HiNR $H C$ SECUNT.

Annual report 1974

It is now installed in the MSR beam shack. Other than the computer itself, the major components of the DAS are a CAMAC crate and type-A controller, an EG\&G time-digital converter (TDC 100) and an MBD-11, which is a microprogrammable branch driver made by Bi-Ra of Albuquerque.

FIGURE 9: MSR data acquisition logic (simplified).
From Dave Garner's thesis, June 1979, UBC

1975

\leftarrow First mesons down M9 and M20 (300 nA)

Annual report 1975

Fig. 19. View of $1 T 2$ meson production target and the three meson channels, showing beam line 1 entering from the left and (clockwise) M9, M20 and M8.

Annual report 1975

↔"Shack"s

From Jess Brewer's Poster, TARA event
$\mu S R$ in CANADA - July 11,1975

Histogram shows μ^{t} precession with $\sim 15,000$ events.
Event rate ($\sim 0.1 \times \mu$ stop rate) \approx ane per sec per nanowing of proton beam incident on 10 cm Be target,
Tine for "forward" muons from decoy of $139 \mathrm{MeV} / \mathrm{C}$ pions

A Varian magnet from the University of Tokyo, with associated counters, provides a very uniform field up to 10 kG ; it was used to obtain the carbon $\mu+$ SR spectrum \rightarrow

A large collection of experimental apparatus has been prepared for $\mu S R$ research, and waits only for a
 consistent and substantial beam to begin producing results.

1976: My priority $\rightarrow \mu$-SR (nobody else was working on it)

$\mu+$ SR in solid

- μ^{+}probes B-fields at interstitial sites
(z) (z
- μ-Z atom probes B-fields at lattice sites (as in NMR)
- μ-SR works even if there are no isotopes suitable for NMR

$\boldsymbol{\mu}$-SR difficulties -

- μ^{-}spin depolarizes during capture/cascade
- μ^{-}"lifetime" short due to nuclear capture
\downarrow
μ-SR needs much MORE beam intensity

Annual report 1976

Table II. Beam Time to Experiments 1976

Experiment	Short title	Spokesman	Number of 12 h shifts scheduled	Hours of beam delivered	
				Jul-Dec	Mar-Jun
BEAM LINE 1					
1, 54	π scattering	R.R. Johnson	29	209.3	-
9	$\pi^{-}+p \rightarrow \gamma+n$	D.F. Measday	16	-	101.3
10	$\mathrm{pp} \rightarrow \pi^{+}+\mathrm{d}$	G. Jones	94	597.5	272.8
23b	$\pi^{+} \rightarrow e \nu_{e} \gamma$	P. Depommier	27	254.8	-
35,71	$\mu S R \quad \mu \pm S R$	D.G. Fleming T. Yamazaki	23	145.8	50.3
41a,b	π capture	M. Salomon M. Hasinoff	28	79.8	98.0
42a, 80	π-mesic X -rays	G.R. Mason A. Olin	31	2.16 .3	55.5
46	Polarized muonic ${ }^{209} \mathrm{Bi}$	G.T. Ewan R.M. Pearce	2	16.0	-
52	$\pi \rightarrow \mathrm{e} v$	D.A. Bryman	38	145.2	187.4
53	HEFPA	P.W. Martin	2	-	19.3
60	μ capture in MgO	J.B. Warren	10	56.7	8.0
61	Biomedical	L.D. Skarsgard	30	232.7	33.5

- - SR (Experiment 71)

- ... μ-SR is only practical at beam intensities of >10 $\mu \mathrm{A}$.
- In 1977 the number of available shifts at $10 \mu \mathrm{~A}$ was limited by shutdowns ... and the requirements of the $\mu \rightarrow$ ev experiment.
Thus μ-SR has again been postponed in favour of $\mu+$ SR, which can be applied more efficiently at low rates.

Annual report 1977

Table II. Beam Time to Experiments 1977

Area/ Beam Line	Experiment	Short Title	Spokesman	Number of 12-hour shifts scheduled
BEAM LINE 1				(P) polarized beam
M8	61	Biomedical	L.D. Skarsgard	106
	1,54	π scattering	R.R. Johnson	31
	53	Heavy fragments	D. Gill	14
19	M9 development	-	-	6
	57	$\mu \rightarrow \mathrm{er}$	P. Depommier J-M Poutissou	60
	52	$\pi \rightarrow \mathrm{e} v$	D.A. Bryman	$\begin{array}{cl} 22 & \& 24 \\ \text { (parasitic with } 57 \text {) } \end{array}$
	13,51,80,89	Pionic X-rays	R.M. Pearce G.A. Beer S. Kaplan	27
	42a	$\pi^{3} \mathrm{He}$	G.R. Mason	6
	41 b	$\pi^{-} \pi^{\circ}$ charge exchange	M.D. Hasinoff M. Salomon	(parasitic with 42a)
	60	Muonium in insulators	J.B. Warren	9
	46,71,73	Muon studies	G.T. Ewan J. Brewer	18
M20	35,71,78	$\mu \mathrm{SR}$	J. Brewer	151
Beam line 1	10	$\mathrm{pp} \rightarrow \pi \mathrm{d}$	G. Jones	64 (P)
	75	$\mathrm{pd} \rightarrow \pi \mathrm{t}$	W.C. Olsen	18 (P)

1977 TRIUMF $\mu \rightarrow \mathrm{e} \mathrm{\gamma}$

1977 SIN (PSI) $\mu \rightarrow \mathrm{e} \mathrm{\gamma}$

Volume 39, Number 18
 physical review letters

New Limit on the Decay $\mu^{+} \rightarrow e^{+} \gamma$

P. Depommier, J.-P. Martin, J.-M. Poutissou, and R. Poutissou and
D. Berghofer, M. D. Hasinoff, D. F. Measday, and M. Salomon
Physics Department, University of British Columbia, Vancouver, British Columbia V6T IW5, Canada

TRIUMF, University of British Columbia, Vancouver, British Columbia V6T1W5, Canada
and
Physics Department-TRUMF, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada and

School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia

	$A \cup g 1977$		$\rightarrow e^{+} \gamma$ decay has fidence level.
rests primarily on the $\mu^{+}-e^{+} \gamma^{1} \mu^{+} \rightarrow e^{+} e^{+} e^{-},{ }^{2}$ actions are	$\{\mu e \gamma$		(TINA, 45.7 cm diam .5 cm diam $\times 35.5 \mathrm{~cm}$)
$\begin{aligned} & R_{\mu^{+\rightarrow} e^{+} \gamma}=\frac{\Gamma\left(\mu^{+}-e\right.}{\Gamma\left(\mu^{+}-e^{+} i\right.} \\ & R \quad . \quad \\ & =\frac{\Gamma\left(\mu^{+}-\right.}{} \end{aligned}$			

Volume 72B, number 2
PHYSICS LETTERS

A NEW UPPER LIMIT FOR THE DECAY $\mu^{+} \rightarrow \mathrm{e}^{+} \gamma^{\star}$
H.P. POVEL, W. DEY, H.K. WALTER, H.J. PFEIFFER U. SENNHAUSER, J. EGGER, H.J. GERBER, M. SALZMANN

Institut für Hochenergiephysik, ETH-Zürich, Switzerland
A. van der SCHAAF, W. EICHENBERGER, R. ENGFER, E. HERMES, F. SCHLEPÜTZ, U. WEIDMANN Physik-Institut, Universität Zürich, Switzerland
and
C. PETITJEAN and W. HESSELINK

SIN, CH. 5234 Villigen, Switzerland
Received 21 October 1977
A search for the decay $\mu^{+} \rightarrow \mathrm{e}^{+} \gamma$, performed at SIN, yields a new upper limit $R_{\mu \rightarrow \mathrm{e} \gamma}<1.1 \times 10^{-9}(90 \%$ confidence). Electrons and photons from the decay of 7.5×10^{11} stopped μ^{+}were measured with two $\mathrm{NaI}(\mathrm{T} 1)$ detectors t $180^{\circ}(1.2 \%$ efficiency for $\mu-\gamma)$. Their distribution in the region $E_{\mathrm{e}}, E_{\gamma}>26 \mathrm{MeV}$ shows agreement with the theory for $\mu^{+} \rightarrow \mathrm{c}^{+}$uix.

Oct 1977
The present experimen
tio $R_{\mu \rightarrow \mathrm{e} \gamma}=\Gamma(\mu \rightarrow \mathrm{e} \gamma) / \Gamma(\mu$ $\begin{aligned} & \text { sone of the strongest const } \\ & \text { nonconservation. The intere }\end{aligned}, Q_{\text {pey }}<1,7 \times 10-9 \begin{aligned} & \text { in in the } 400 \text { ns integration time }\end{aligned}$
nonconservation can be incorporated in gauge theories scintillation counter S 6 with a hole of $\varnothing 80 \mathrm{~mm} ; \mathrm{S} 6$
in a natural way [2]. A new $\mu^{+} \rightarrow \mathrm{e}^{+} \gamma$ experiment was suppresses neutral background produced by electrons motivated by the high intensity and 100% duty cycle in the collimator. The photon energy is measured in a

$<4.2 \times 10^{-13}$

help distinguish among models
We report here the results of a new search We report here the results of a new search fo
the $\mu^{+} \rightarrow e^{+} \gamma$ decay carried out at TRIUMF using two large $\mathrm{NaI}(\mathrm{Tl})$ crystals. The experiment was performed on the stopped π / μ channel ($M 9$) with a $100-\mathrm{MeV} / \mathrm{c}$ beam composed of $61 \% \pi^{+}, 29 \% \mu^{+}$ and $10 \% e^{+}$. The setup is shown in Fig. 1. Pions were stopped in a $15 \times 15 \times 0.6 \mathrm{~cm}^{3}$ scintillationincident beam. The stopping rate was $2 \times 10^{5} / \mathrm{sec}$
the decay $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ was the source of muons. The
 periment. The scintillation counters Nos. $1-10$ (thict-
ness not to scale) were used to identify charged parti-
arget 1 conisisis 01 two scinumator alsks 1440 mm , thickness 5 mm) each coupled to a photomultiplier by an air light guide. The electron detector consists of a $\mathrm{NaI}(\mathrm{TI})$ crystal $(\Phi 277 \mathrm{~mm}$, length 330 mm), a trigge counter S , a counter S 8 and two multiwire propor-
*Work supported in part by the Swiss National Science Foun dation, by the Schweizerisches Institut für Nuklearforschung and the Netherlands Organization for the Advancement of Pure Research (Z.W.O.)
mon beow 43 MeV due to their energy toss of about 10 MeV in S1-S5. About 26% of the 53 MeV photons onvert in the $\mathrm{NaI}(\mathrm{Tl})$ disk C ($\varnothing 120 \mathrm{~mm}$, thicknes 20 mm) and give a signal in both planes of the hodo sope H consisting of 2×10 strips of plastic scintillator width 14 mm , thickness 3 mm). Cosmic-ray background is reduc concrete above the apparatus. Cadmium plates and borated paraffine blocks are used for shielding against

1978 - my thesis was due in < 1 year

A new setup

- In Tokyo, I found an old pair of air-core coils previously used for beta spectrometer
- Instead of transverse B-field, why not longitudinal?
- μ^{\ddagger} depolarization may be suppressed by applying a longitudinal (holding) field

The new setup, Hayano et al. (1978)

COUNTER SYSTEM

Spring 1978, @ M20

After some time
(remember, no e-mails in those days) a FAX message arrived from Tokyo
"take data beyond $4 \boldsymbol{\mu s}$ "
us

The first experimental observation of the "Kubo-Toyabe" function.

Ryogo Kubo, 1920-1995

"I never expected that the zero-field spin relaxation experiment would ever become possible"
R. Kubo, 1978

Ryogo Kubo, 1920-1995

Fig. 66. Longitudinal relaxation of μ^{+} decay asymmetry in MnSi in zero and weak longitudinal magnetic fields.

Stochastic theory of zero-field μ SR. The zero-field spin relaxation function for the
static nuclear dipole system was derived theoretically by Kubo and Toyabe [Magnetic resonance \& relaxation (North-Holland, Amsterdam, 1967) p.810]:

$$
G_{z}^{K T}(t)=\frac{1}{3}+\frac{2}{3}\left(1-\Delta^{2} t^{2}\right) \exp \left(-\frac{1}{2} \Delta^{2} t^{2}\right)
$$

This function is characterized by the "recovery" of the polarization of the fraction (1/3) of spins whose orientation is initially parallel to the local field.

In 1979 a stochastic theory of spin relaxation has been formulated based on the
strong-collision approximation to take into account the dynamical modulation of the random local field; the following iterative formula was obtained for the modulation rate $\nu=1 / \tau_{c}$:

$$
\begin{aligned}
G_{z}(t, v)= & \exp (-v t)\left\{G_{z}^{K T}(t)\right. \\
& +v \int_{0}^{t} G_{z}^{K T}\left(t_{1}\right) G_{z}^{K T}\left(t-t_{1}\right) d t_{1} \\
& +v^{2} \int_{0}^{t} \int_{0}^{t_{2}} G_{z}^{K T}\left(t_{1}\right) G_{z}^{K T}\left(t_{2}-t_{1}\right) \\
& \left.\times G_{z}^{K T}\left(t-t_{2}\right) d t_{1} d t_{2}+\ldots \ldots\right\} .
\end{aligned}
$$

As shown in Fig. 75, $G_{Z}(t, v)$ is sensitive even to the very slow modulation $\left(\tau_{c} \cdot \Delta \geqslant_{\lambda}\right)$

Web of Science

Basic Search

TRIUMF - 6,281 publications (1974-2018) Sum of Times Cited - 160,445

Thank you TRIUMF

Congratulations!

