Extreme THz Light-Matter Interactions

David G. Cooke Dept. of Physics, McGill University, Montreal, QC Canada

ULTRAFAST THZ SCIENCE AT MCGILL

CURRENT RESEARCH THEMES:

1. Ultrafast carrier dynamics in condensed matter

1

- 2. THz light-driven coherent electron pulses
- 3. Dynamic photonics in the THz band

Outline

Strong field THz light-matter interactions

- Laser-based sources of strong field THz pulses
- Sub-cycle control of charge and spin degrees of freedom
- Strong, shaped THz fields for control of matter

Cold THz field emission of electrons from nanotips

- High bunch charge (> 10^5 electrons/pulse @ 1 kHz)
- Few fs temporal jitter
- High degree of transverse coherence / brightness

Particle acceleration using THz fields

- Why THz fields?
- State of the art and outlook

1 THz frequency light:

- 300 µm vacuum wavelength (approx. thickness of the thickest human hair)
- period of 1 picosecond (1 trillionth of a second)
- Energy equivalent (1 THz):
 - 48 Kelvin ($E = k_B T$)
 - 33.3 cm⁻¹
 - 4.13 meV

THZ FIELD CONTROL OF MATTER

- Electric field of the pulse is measured coherently in the time domain.
- Spectra is obtained by Fourier transform.

NONLINEAR CRYSTALS

- High nonlinearity
- Good phase matching (THz wave front same v as pump)
- Low absorption of pump and THz

Material	d₀∉ [pm/V]	<u>n_{ar}(800 nm)</u>	N _{THZ}	n _{gr} (1.55 um)	α _{THz} [cm⁻¹]	FOM [pm ² cm ² /V ²]
<u>CdTe</u>	81.8		3.24	2.81	4.8	11.0
<u>GaAs</u>	65.6	4.18	3.59	3.56	0.5	4.21
<u>GaP</u>	24.8	3.67	3.34	3.16	0.2	0.72
<u>ZnTe</u>	68.5	3.13	3.17	2.81	1.3	7.27
<u>GaSe</u>	28	3.13	3.27	2.82	0.5	1.18
sLiNbO ₃	168	2.25	4.96	2.18	17	18.2
<u>sLN</u> 100K	-	-	-	-	4.8	48.6
DAST	615	3.39	2.58	2.25	50	41.5

Lithium niobate looks great, but terrible phase matching...

TILTED PULSE FRONT OPTICAL RECTIFICATION

phase matching by pulse front tilting

Can then achieve phase matching in LiNbO₃ Appl. Phys. Lett. 83, 3000 (2003), Appl. Phys. B 78, 593 (2004)

Simulations courtesy of Matthias Hoffman, SLAC

Limitations of tilted-pulse-front

Blanchard, Cooke et al., Opt. Lett. 39, 4333 (2015)

700 kV/cm peak field strength. MV/cm possible with better focusing.

More efficient with pump pulse durations > 200 fs.

INTENSE THZ PULSES

Tilted pulse front optical rectification

- Pulse energy ~ 1 μJ
- Peak E-field ~800 kV/cm
- Peak B-field ~ 0.26 Tesla
- Intensity = 800 MW/cm²

THZ FIELD CONTROL OF THE SOLID STATE

- Energy scales of "interesting" materials are in the milli-eV range
 - superconductivity
 - charge/spin density waves
 - magnons
 - excitons
 - cavity exciton polaritons
 - polarons
 - Etc...
- Coherent control of these excitations requires shaped, near resonant and strong THz field transients.

• Multiple-pulses can manipulate the order parameter in more complex ways

Shaped THz fields to coherently manipulate superconducting order parameter

THz multi-dimensional spectroscopy

Frequency range	Relevant excitations
Radio(MHz-GHz)	Nuclear spin, magnetic moments
Infrared (mid-IR)	Vibrational
Optical	Electronic, excitonic
1 – 10 THz	Collective excitations, spin/charge density waves, superconductivity, excitons, magnons, phonons, molecular rotations

Previous work: 2D THz spectroscopy

T. Kuehn, T. Elsaesser et al., J. Chem. Phys 2009

Molecular rotations

Collective spin waves

J. Lu, K. Nelson et al., PRL 2017

TEMPORAL SHAPING THZ LIGHT

New capability: Direct and arbitrary shaping of kV/cm THz light pulses

JACQUES—CARTIER BRIDGE, MTL

fs creation of metal-dielectric structures patterned in HRFZ silicon slab

Playground for THz pulse shaping and manipulation in space and time.

Not the only way! Can also pattern the pump + antenna or optical rectification.

- 1. Liu, Park, Weiner, IEEE J. Sel. Top. Quant. Electron. 2, 709 (1996)
- 2. Ahn, Efimov, Averitt and Taylor, Opt. Express 11, 2486 (2003).

THz waveform synthesis

Pretty much any pulse shape is possible now and can be switched pulse-to-pulse.

OPTIMIZED THZ COHERENT CONTROL fs (or ps) laser Engineered pulse sequences for complex quantum control of meV scale transitions. Spatial light Genetic algorithm modulator quantum state control 0.5 Assess fidelity E_{refi} (a.u.) (population 0.0 of final state) -0.5 -1.0 L 0 σ_v 10 20 30 40 50 Time (ps) σ_x

THZ FIELD EMISSION FROM NANOTIPS

Electrons experience accelerations of 10^{21} m/s², reaching ~ 1 keV in < 10 fs (50 nm)!

27

Electron emission setup

femtoCoulomb bunch charges

Tip contamination is an issue. In-situ heating installed.

- Investigate non-repetitive structural effects (grain boundaries, metastability, etc.. OR soft/organic compounds that degrade.
- > 10⁵ electrons in a bunch required to resolve a diffraction image: Daoud, Floettmann and R. J. D. Miller, Struct. Dyn. 4, 044016 (2017).
- THz measured nanotip bunch charge is ~10⁵ ! Possible to resolve single shot diffraction image.

- Electron equivalent to X-ray Pulse Correlation Spectroscopy (XPCS) Mark Sutton
- Ground (or excited) state atomic and electronic structural dynamics with sub-Angstrom, few fs resolution.

Optical field electron wave packet control

All-optical control and metrology of electron pulses

C. Kealhofer,^{1,2} W. Schneider,^{1,2} D. Ehberger,^{1,2} A. Ryabov,^{1,2} F. Krausz,^{1,2*} P. Baum^{1,2*}

Science, 352, 429 (2016).

THz electron streaking

This was single to few electrons/bunch. Can we do 10⁵ electrons?

Goal: All-THz driven UED instrument

THZ PARTICLE ACCELERATION

Post-doctoral position available!

Why use THz fields?

- Maximum acceleration gradients limited by field induced breakdown.
- Breakdown field scales as 1/(pulse duration)⁶
 - GV/m fields are accessible yielding compact devices
- Fields are intrinsically phase stable and synchronized to temporal jitter of < 2 fs rms (typical).
- Compatible with high brightness sources (e.g. nanotips)
- Size of structures are mm scale (easy to make and support high (picoCoulomb) bunch charge.
- Potentially save some \$\$\$.

nature photonics

Segmented terahertz electron accelerator and manipulator (STEAM)

Dongfang Zhang^{1,2,5*}, Arya Fallahi^{1,5}, Michael Hemmer¹, Xiaojun Wu^{1,4}, Moein Fakhari^{1,2}, Yi Hua¹, Huseyin Cankaya¹, Anne-Laure Calendron^{1,2}, Luis E. Zapata¹, Nicholas H. Matlis¹ and Franz X. Kärtner^{1,2,3}

Published in April 2018

STEAM power

39

Conclusions

- Currently a renaissance in THz tool development.
- 10's of MV/cm peak THz source + pulse shaping for multi-pulse NMR spectroscopy in the THz band.
- Cold field emission of electrons from nanotips promising for next generation ultrafast instrumentation.
- **THz control of particle beams is here** and developing rapidly. Huge payoff if it can be made to work.

Thanks

<u>McGill</u>

Lauren Gingras, PhD Dominique Matte, PhD David Valverde-Chavez, PhD Yang Lan, PhD Benjamin Dringoli, MSc Bradley Siwick Peter Grutter Mark Sutton

Northwestern University

Costas Stoumpos Mercouri Kanatzidis

Lund University

Villy Sundstrom Arkady Yartsev Carlito Ponseca Jr.

University of Ottawa

Jean-Michel Menard Wei Cui Aidan Schiff-Kearn

<u>NIST</u> Paul Haney

Fonds de recherche sur la nature et les technologies Québec