Multiphonon excitations in dark matter direct detection

Tongyan Lin UCSD

September 9, 2022
GUINEAPIG workshop

Dark matter mass

Single phonon excitation

From TESSERACT white paper
Single phonons excitations with energy 1-100 meV (SPICE)

$\mathrm{O}(10) \mathrm{eV}$ thresholds

Nuclear recoils
$\mathrm{O}(\mathrm{keV})$ thresholds

DM-nucleus scattering in crystals

Applications also for the Migdal effect and calculating backgrounds

keV
MeV
GeV
TeV
Dark matter mass

Brian Campbell-Deem, Knapen, TL, Ethan Villarama 2205.02250
Campbell-Deem, Cox, Knapen, TL, Melia 1911.03482

What does DM-nucleus scattering look like in a crystal?

When momentum transfer

$$
q \gg q_{\mathrm{BZ}}=\frac{2 \pi}{a} \sim \text { few keV }
$$

and $\omega \gg \bar{\omega}_{\text {phonon }} \sim 10-100 \mathrm{meV}$
DM scatters off an individual nucleus

What does DM-nucleus scattering look like in a crystal?

When momentum transfer

$$
\begin{gathered}
q \ll q_{\mathrm{BZ}}=\frac{2 \pi}{a} \\
\text { and } \omega \sim \bar{\omega}_{\text {phonon }}
\end{gathered}
$$

DM excites collective excitations = phonons

DM scattering rate

$$
\frac{d \sigma}{d^{3} \mathbf{q} d \omega} \propto \sigma_{\chi p}\left|\tilde{F}_{\text {med }}(q)\right|^{2} \underbrace{S(\mathbf{q}, \omega)}_{\substack{\text { Dynamic structure factor } \\ \text { capturm factor }}} \delta\left(\omega-\mathbf{q} \cdot \mathbf{v}+\frac{q^{2}}{2 m_{\chi}}\right)
$$

For free nuclei and spin-independent interactions:

$$
S(\mathbf{q}, \omega) \propto A_{N}^{2} \delta\left(\omega-\frac{q^{2}}{2 m_{N}}\right)
$$

Goal: understand $S(\mathbf{q}, \omega)$ from the single phonon to the nuclear recoil regime

DM-nucleus scattering in a crystal

Structure factor for GaAs
$\log _{10}\left[S(q, \omega) / \mathrm{keV}^{2}\right]$

- χ
f_{J} - effective coupling strength between DM and ion J

Short range SI interaction

$$
\sigma_{\chi p}=4 \pi b_{p}^{2}
$$

Scattering potential in Fourier space

$$
V(\mathbf{q}) \propto b_{p} \sum_{J} f_{J} e^{i \mathbf{q} \cdot \mathbf{r}_{J}}
$$

$$
\begin{array}{rlr}
S(\mathbf{q}, \omega) & \left.\equiv \frac{2 \pi}{V} \sum_{f}\left|\sum_{J}\left\langle\Phi_{f}\right| f_{J} e^{i \mathbf{q} \cdot \mathbf{r}_{J}}\right| 0\right\rangle\left.\right|^{2} \delta\left(E_{f}-\omega\right) & \begin{array}{c}
\text { Contains } \\
\text { interference terms } \\
\text { between different }
\end{array} \\
& =\frac{1}{V} \sum_{J, J^{\prime}}^{N} f_{J} f_{J^{\prime}}^{*} \int_{-\infty}^{\infty} d t\left\langle e^{-i \mathbf{q} \cdot \mathbf{r}_{J^{\prime}}(0)} e^{i \mathbf{q} \cdot \mathbf{r}_{J}(t)}\right\rangle e^{-i \omega t} & \begin{array}{c}
\text { atoms } \rightarrow \text { single } \\
\text { phonon excitations }
\end{array}
\end{array}
$$

Dynamic structure factor

Phonons appear through positions of ions:

$$
\mathbf{r}_{J}(t)=\mathbf{r}_{J}^{0}+\mathbf{u}_{J}(t)
$$

Quantized phonon field given in terms of phonon dispersions $\omega_{\mathbf{q}}$ and eigenvectors $\mathbf{e}_{\mathbf{q}}$

Single phonon contribution has been studied extensively in literature, with $\omega_{\mathbf{q}^{\prime}} \mathbf{e}_{\mathbf{q}}$ calculated from first principles approaches

$$
S^{n=1}(\mathbf{q}, \omega) \sim \sum_{J, J^{\prime}} f_{J} f_{J^{\prime}} \int d t\left\langle\mathbf{q} \cdot \mathbf{u}_{J}(0) \mathbf{q} \cdot \mathbf{u}_{J^{\prime}}(t)\right\rangle e^{-i \omega t}
$$

Griffin, Knapen, TL, Zurek 1807.10291; Griffin, Inzani, Trickle, Zhang, Zurek 1910.10716
Griffin, Hochberg, Inzani, Kurinsky, TL, Yu 2020; Coskuner, Tickle, Zhang, Zurek 2102.09567

Dynamic structure factor

Expansion in $q^{2} /\left(M_{N} \omega\right)$ (and anharmonic interactions):

$$
\begin{aligned}
S(\mathbf{q}, \omega)= & (0 \text {-phonon }) \\
& +(1 \text {-phonon }) \\
& +(2 \text {-phonon })+\cdots
\end{aligned}
$$

Harmonic

Anharmonic

Quickly becomes more complicated to evaluate for more than 1 phonon

Our approach: use harmonic \& incoherent approximations

Incoherent approximation for

$q>q_{\mathrm{BZ}}$ or $n>1$ phonons

Neglect interference terms entirely:

$$
S(\mathbf{q}, \omega) \approx \frac{1}{V} \sum_{J}^{N}\left(f_{J}\right)^{2} \int_{-\infty}^{\infty} d t\left\langle e^{-i \mathbf{q} \cdot \mathbf{u}_{J}(0)} e^{i \mathbf{q} \cdot \mathbf{u}_{J}(t)}\right\rangle e^{-i \omega t}
$$

Given in terms of auto-correlation function

Motivation for $q>q_{\mathrm{BZ}}$: scatter off individual nuclei at large q

Motivation for $n>1$: momentum gets distributed over multiple phonons, and the motions of individual atoms will be less correlated.

Auto-correlation can be approximated using the phonon density of states
$\left\langle\mathbf{q} \cdot \mathbf{u}_{J}(0) \mathbf{q} \cdot \mathbf{u}_{J}(t)\right\rangle \approx \frac{q^{2}}{2 m_{N}} \int d \omega^{\prime} \frac{D\left(\omega^{\prime}\right)}{\omega^{\prime}} e^{i \omega^{\prime} t}$
In the harmonic, isotropic limit

Dynamic structure factor with incoherent approximation:

$$
\begin{gathered}
S(q, \omega) \propto \sum_{J} e^{-2 W_{J}(q)}\left(f_{J}\right)^{2} \sum_{n} \frac{1}{n!}(\underbrace{\left.\frac{q^{2}}{2 m_{N}}\right)^{n}\left(\prod_{i=1}^{n} \int d \omega_{i} \frac{D\left(\omega_{i}\right)}{\omega_{i}}\right) \delta\left(\sum_{j} \omega_{j}-\omega\right)} \\
\sim\left(\frac{q^{2}}{2 m_{N} \bar{\omega}_{\mathrm{ph}}}\right)^{n} \\
q \approx \sqrt{2 m_{N} \bar{\omega}_{\mathrm{ph}}} \text { for many phonons to contribute }
\end{gathered}
$$

Comparison with full (DFT) calculation for $\mathrm{n}=1$ phonon

Incoherent approximation captures integrated structure factor

Comparison with full (DFT) calculation for $\mathrm{n}=1$ phonon

2 phonons

Harmonic

Anharmonic

Calculated in long-wavelength ($q \ll q_{\mathrm{BZ}}$) limit in crystals Campbell-Deem, Cox, Knapen, TL, Melia 1911.03482

Calculated in superfluid He :
Schutz and Zurek 1604.08206
Knapen, TL, Zurek 1611.06228

GaAs 2-phonon, $(\omega>40 \mathrm{meV})$

Incoherent approximation works to within a factor of few for $q<q_{\mathrm{BZ}}$, comparing to harmonic crystal result. Anharmonic interactions give another factor of few correction.

This should work better with higher q and n.

Multiphonons become important around $q=\sqrt{2 m_{N} \bar{\omega}_{\mathrm{ph}}}$

GaAs, Multiphonon Response

Impulse approximation

When $q \gg \sqrt{2 m_{N} \bar{\omega}_{\mathrm{ph}}}$, "re-sum" the n-phonon contributions and directly evaluate by saddle-point approximation:

$$
S^{\mathrm{IA}}(q, \omega) \propto \sum_{J} f_{J}^{2} \sqrt{\frac{2 \pi}{\Delta^{2}}} \exp \left(-\frac{\left(\omega-\frac{q^{2}}{2 m_{N}}\right)^{2}}{2 \Delta^{2}}\right), \quad \Delta^{2}=\frac{q^{2} \bar{\omega}_{\mathrm{ph}}}{2 m_{N}}
$$

As $\omega \gg \bar{\omega}_{\mathrm{ph}}, \Delta / \omega \rightarrow 0$, take narrow-width limit:

$$
S(q, \omega) \propto \sum_{J} f_{J}^{2} \delta\left(\omega-\frac{q^{2}}{2 m_{N}}\right)
$$

reproducing free nuclear recoils

DM scattering rate

Dark photon mediator

Coupling given by q-dependent effective charge $Z(q)$
Single phonon reach estimated by dielectric response or directly computed in DFT

Future steps

Pinning down $S(q, \omega)$:

Quantify theoretical uncertainties and validity of approximations

Detailed look at two (or three) phonon rates

Experimental calibration?

Above eV scale, rates pretty quickly
 converge to the impulse approximation, nuclear recoils

Migdal effect

DM-nucleus scattering with charge emission

From Liang, Mo, Zheng, Zhang 2205.03395 Knapen, Kozaczuk, Lin 2011.09496

Backgrounds

Coherent scattering of high energy ($\sim \mathrm{MeV}$) photons off ions

A. Robinson 1610.07656

Figure from Berghaus, Essig, Hochberg, Shoji, Sholapurkar 2112.09702

DM scattering in crystals

First steps towards describing DM-nucleus scattering into multiphonons.

Single phonon excitation
keV

Multiphonons

Nuclear recoils

Dark matter mass

