Multiphonon excitations in dark matter direct detection

Tongyan Lin UCSD

September 9, 2022 GUINEAPIG workshop

Dark matter mass

 $\mathcal{O}(q), \ \mathcal{O}(q^2) \ \text{or} \ \mathcal{O}(q^4)$

 $\mathcal{O}(q^4)$

keV MeV

GeV

TeV

Single phonon excitation

From TESSERACT white paper

Single phonons excitations with energy 1-100 meV (SPICE)

$$\sim \delta \left(\omega - \frac{q^2}{2m_N}\right)$$

O(10) eV thresholds

O(keV) thresholds

 $\mathcal{O}(q), \ \mathcal{O}(q^2) \ \text{or} \ \mathcal{O}(q^4)$

 $\mathcal{O}(q),\ \mathcal{O}(q^2)\ \text{or}\ \mathcal{O}(q^4)\ \mathcal{O}(q),\ \mathcal{O}(q^2)\ \text{or}\ \mathcal{O}(q^4)\ \mathcal{O}(q^4)$

 $\mathcal{O}(q^4)$

Applications also for the Migdal effect

Single phonon excitation

 $egin{aligned} \mathsf{Multiphonons} \ \mathcal{O}(q^{2n}) & \sim \delta \left(\omega - \mathcal{O}_{2m_N}^{q}
ight) \end{aligned}$

keV

MeV

GeV

TeV

Dark matter mass

Brian Campbell-Deem, Knapen, TL, Ethan Villarama 2205.02250 Campbell-Deem, Cox, Knapen, TL, Melia 1911.03482 5 Knapen, Kozaczuk, TL 2011.09496

What does DM-nucleus scattering look like in a crystal?

When momentum transfer

$$q \gg q_{\rm BZ} = \frac{2\pi}{a} \sim \text{few keV}$$

and $\omega \gg \bar{\omega}_{\mathrm{phonon}} \sim 10\text{-}100~\mathrm{meV}$

DM scatters off an individual nucleus

What does DM-nucleus scattering look like in a crystal?

When momentum transfer

$$q \ll q_{\rm BZ} = \frac{2\pi}{a}$$

and $\omega \sim \bar{\omega}_{\mathrm{phonon}}$

DM excites collective excitations = phonons

DM scattering rate

$$\frac{d\sigma}{d^3\mathbf{q}\,d\omega} \propto \sigma_{\chi p} \, |\tilde{F}_{\mathrm{med}}(q)|^2 \, S(\mathbf{q},\omega) \, \delta(\omega - \mathbf{q} \cdot \mathbf{v} + \frac{q^2}{2m_\chi})$$

Dynamic structure factor captures response of target

For free nuclei and spin-independent interactions:

$$S(\mathbf{q},\omega) \propto A_N^2 \, \delta \left(\omega - \frac{q^2}{2m_N}\right)$$

Goal: understand $S(\mathbf{q},\omega)$ from the single phonon to the nuclear recoil regime

DM-nucleus scattering in a crystal

Structure factor for GaAs

 $Log_{10}[S(q,\omega)/keV^2]$

DM-nucleus interaction

 $f_{\!J}$ - effective coupling strength between DM and ion J

Short range SI interaction

$$\sigma_{\chi p} = 4\pi b_p^2$$

Scattering potential in Fourier space

$$V(\mathbf{q}) \propto b_p \sum_J f_J e^{i\mathbf{q}\cdot\mathbf{r}_J}$$

$$S(\mathbf{q},\omega) \equiv \frac{2\pi}{V} \sum_{f} \left| \sum_{J} \langle \Phi_{f} | f_{J} e^{i\mathbf{q} \cdot \mathbf{r}_{J}} | 0 \rangle \right|^{2} \delta \left(E_{f} - \omega \right)$$

$$= \frac{1}{V} \sum_{J,J'}^{N} f_{J} f_{J'}^{*} \int_{-\infty}^{\infty} dt \left\langle e^{-i\mathbf{q} \cdot \mathbf{r}_{J'}(0)} e^{i\mathbf{q} \cdot \mathbf{r}_{J}(t)} \right\rangle e^{-i\omega t}$$

Contains interference terms between different atoms \rightarrow single phonon excitations

Dynamic structure factor

Phonons appear through positions of ions:

$$\mathbf{r}_J(t) = \mathbf{r}_J^0 + \mathbf{u}_J(t)$$

Quantized phonon field given in terms of phonon dispersions $\omega_{\mathbf{q}}$ and eigenvectors $\mathbf{e}_{\mathbf{q}}$

Single phonon contribution has been studied extensively in literature, with $\omega_{\bf q}$, ${\bf e}_{\bf q}$ calculated from first principles approaches

$$S^{n=1}(\mathbf{q},\omega) \sim \sum_{J,J'} f_J f_{J'} \int dt \langle \mathbf{q} \cdot \mathbf{u}_J(0) \mathbf{q} \cdot \mathbf{u}_{J'}(t) \rangle e^{-i\omega t}$$

Griffin, Knapen, TL, Zurek 1807.10291; Griffin, Inzani, Trickle, Zhang, Zurek 1910.10716 Griffin, Hochberg, Inzani, Kurinsky, TL, Yu 2020; Coskuner, Tickle, Zhang, Zurek 2102.09567

Dynamic structure factor

Expansion in $q^2/(M_N\omega)$ (and anharmonic interactions):

$$S(\mathbf{q},\omega)=$$
 (0-phonon) Harmonic Anharmonic + (1-phonon) + $(2\text{-phonon})+\cdots$

Quickly becomes more complicated to evaluate for more than 1 phonon

Our approach: use harmonic & incoherent approximations

Incoherent approximation for $q > q_{\rm BZ}$ or n > 1 phonons

Neglect interference terms entirely:

$$S(\mathbf{q},\omega) \approx \frac{1}{V} \sum_{J}^{N} (f_J)^2 \int_{-\infty}^{\infty} dt \, \langle e^{-i\mathbf{q}\cdot\mathbf{u}_J(0)} e^{i\mathbf{q}\cdot\mathbf{u}_J(t)} \rangle e^{-i\omega t}$$

Given in terms of auto-correlation function

Motivation for $q>q_{\rm BZ}$: scatter off individual nuclei at large q

Motivation for n > 1: momentum gets distributed over multiple phonons, and the motions of individual atoms will be less correlated.

Auto-correlation can be approximated using the phonon density of states

$$\langle \mathbf{q} \cdot \mathbf{u}_J(0) \mathbf{q} \cdot \mathbf{u}_J(t) \rangle \approx \frac{q^2}{2m_N} \int d\omega' \frac{D(\omega')}{\omega'} e^{i\omega't}$$

In the harmonic, isotropic limit

Dynamic structure factor with incoherent approximation:

$$S(q,\omega) \propto \sum_{J} e^{-2W_{J}(q)} (f_{J})^{2} \sum_{n} \frac{1}{n!} \left(\frac{q^{2}}{2m_{N}}\right)^{n} \left(\prod_{i=1}^{n} \int d\omega_{i} \frac{D(\omega_{i})}{\omega_{i}}\right) \delta \left(\sum_{j} \omega_{j} - \omega\right)$$

$$\sim \left(\frac{q^{2}}{2m_{N} \bar{\omega}_{\mathrm{ph}}}\right)^{n}$$

 $q \approx \sqrt{2m_N \bar{\omega}_{\rm ph}}$ for many phonons to contribute

Comparison with full (DFT) calculation for n=1 phonon

Incoherent approximation captures integrated structure factor

Comparison with full (DFT) calculation for n=1 phonon

q [keV]

2 phonons

Calculated in long-wavelength ($q \ll q_{\rm BZ}$) limit in crystals Campbell-Deem, Cox, Knapen, TL, Melia 1911.03482

Calculated in superfluid He:
Schutz and Zurek 1604.08206
Knapen, TL, Zurek 1611.06228
Acanfora, Esposito, Polosa 1902.02361

Multiphonons become important around q =

$$q = \frac{1}{2} \sqrt{2m_N \bar{\omega}_{\rm ph}}$$
:

$$q = \sqrt{2m_N \bar{\omega}_{\rm ph}}$$
:

$$q=2\sqrt{2m_N\bar{\omega}_{\rm ph}}$$
:

GaAs, Massless Scalar Mediator by

deminated by Scalar Mediate Ontributions from 1 phonon 3 events 1, 2, 3, 4... 10^{-39} 10^{-39} 20

Gaussian envelope (Impulse Approximation)

Impulse approximation

When $q\gg\sqrt{2m_N\bar{\omega}_{\rm ph}}$, "re-sum" the n-phonon contributions and directly evaluate by saddle-point approximation:

$$S^{\rm IA}(q,\omega) \propto \sum_J f_J^2 \sqrt{\frac{2\pi}{\Delta^2}} \exp\left(-\frac{(\omega - \frac{q^2}{2m_N})^2}{2\Delta^2}\right), \quad \Delta^2 = \frac{q^2 \bar{\omega}_{\rm ph}}{2m_N}$$

As $\omega \gg \bar{\omega}_{\rm ph}$, $\Delta/\omega \to 0$, take narrow-width limit:

$$S(q,\omega) \propto \sum_{J} f_{J}^{2} \delta \left(\omega - \frac{q^{2}}{2m_{N}} \right)$$

reproducing free nuclear recoils

Free nuclear recoil limit

DM scattering rate

Dark photon mediator

Coupling given by q-dependent effective charge Z(q)

Single phonon reach estimated by dielectric response or directly computed in DFT

Future steps

Pinning down $S(q, \omega)$:

Quantify theoretical uncertainties and validity of approximations

Detailed look at two (or three) phonon rates

Experimental calibration?

Above eV scale, rates pretty quickly converge to the impulse approximation, nuclear recoils

Migdal effect

DM-nucleus scattering with charge emission

$$\frac{d\sigma}{dE_R d\omega_e} \approx \frac{d\sigma_N}{dE_R} \frac{dP}{d\omega_e}$$

$$\uparrow \qquad \uparrow$$

$$\frac{1}{\text{DM-nucleus}}$$
 Probability for scattering charge excitation

From Liang, Mo, Zheng, Zhang 2205.03395 Knapen, Kozaczuk, Lin 2011.09496

Backgrounds

Coherent scattering of high energy (~MeV) photons off ions

A. Robinson 1610.07656 Figure from Berghaus, Essig, Hochberg, Shoji, Sholapurkar 2112.09702

Dark matter mass

GeV

TeV

MeV

keV