Astrophysical Uncertainties in Dark Matter-Electron

with Aria Radick & Anna-Maria Taki JCAP02 (2021) 004 [arXiv:2011.02493]

Tien-Tien Yu (University of Oregon)

GUINEA PIG 2022

DM Direct Detection

look for this jiggle >

Tien-Tien Yu (University of Oregon)

e-

direct detection

DM-electron limits in 2018

Tien-Tien Yu (University of Oregon)

Essig, Volansky, TTY Phys.Rev.D 96 (2017) 4, 043017 [1703.00910] DarkSide Collaboration Phys.Rev.Lett. 121 (2018) 11, 111303 [1802.06998] An, Pospelov, Pradler, Ritz, Phys.Rev.Lett. 120 (2018) 14, 141801 [1708.03642]

DM-electron limits in 2022

Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade [arXiv:2203.08297]

DM-electron limits in the next decade

Projections for future Si Skipper-CCD experiments

Outlook for sub-GeV DM direct detection

ingredients for rate

$$R \sim \overline{\sigma_e} \int d^3 \vec{v} \frac{f(\vec{v})}{v} \int$$

$$\overline{\sigma}_e = \frac{\mu_{\chi e}^2}{16\pi m_{\chi}^2 m_e^2} \overline{|\mathcal{M}_{\chi e}(q)|}_{q^2 = \alpha^2 m_e^2}^2$$

 $F_{DM}(q) \simeq \begin{cases} 1 & \text{heavy mediator} \\ \frac{\alpha m_e}{q} & \text{electric dipole moment} \\ \frac{\alpha^2 m_e^2}{q^2} & \text{light mediator} \end{cases}$

Tien-Tien Yu (University of Oregon)

particle physics

$$d^{3}\vec{q}F_{\rm DM}(\vec{q})^{2}S(\vec{q},\omega_{\vec{q}})$$

ingredients for rate

 $R \sim \overline{\sigma}_e \int d^3 \vec{v} \frac{f(\vec{v})}{v} \int d^3 \vec{q} F_{\rm DM}(\vec{q})^2 S(\vec{q}, \omega_{\vec{q}})$

Tien-Tien Yu (University of Oregon)

material dependent

structure function see talks by Y. Kahn and T. Lin

ingredients for rate

astrophysics

 $R \sim \overline{\sigma}_e \int d^3 \vec{v} \frac{f(\vec{v})}{v} \int d^3 \vec{q} F_{\rm DM}(\vec{q})^2 S(\vec{q}, \omega_{\vec{q}})$

Tien-Tien Yu (University of Oregon)

DM halo-model

DM-e scattering rate

Tien-Tien Yu (University of Oregon)

particle physics

GUINEAPIG – September 10, 2022

DM-e scattering rate

$R \sim \overline{\sigma}_e \int d^3 \vec{v} \frac{f(\vec{v})}{v} \int d^3 \vec{q} F_{\rm DM}(\vec{q})^2 S(\vec{q}, \omega_{\vec{q}})$

dark matter halo

DM-electron limits in 2022

Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade [arXiv:2203.08297]

Why the SHM?

Isothermal spherical distribution for Galactic DM which scales like r^{-2} ╋ collisionless steady-state Boltzmann equation

isotropic Maxwell-Boltzmann velocity distribution

$$f_{\rm MB}(\vec{v}) \propto \begin{cases} e^{-|\vec{v}|^2/v_0^2} & |\vec{v}| < v_{\rm esc} \\ 0 & |\vec{v}| \ge v_{\rm esc} \end{cases}$$

Tien-Tien Yu (University of Oregon)

n.b. anisotropic velocity distributions break the direct relationship between DM density and velocity distributions 15

What is the Standard Halo Model?

$$f_{\rm MB}(\vec{v}) \propto \begin{cases} e^{-|\vec{v}|^2 / v_0^2} & |\vec{v}| < v_{\rm esc} \\ 0 & |\vec{v}| \ge v_{\rm esc} \end{cases}$$
$$\int \int Maxwell-Boltzmann distribution$$

$$f_{\rm SHM}(\vec{v}) = \frac{1}{K} e^{-|\vec{v} + \vec{v}_E|^2 / v_0^2} \Theta(v_{\rm esc} - |\vec{v} + \vec{v}_E|)$$

Tien-Tien Yu (University of Oregon)

Boosted into the Earth's frame:

parameters of SHM

 $f_{\rm SHM}(\vec{v}) = \frac{1}{K} e^{-|\vec{v} + \vec{v}_E|^2 / v_0^2} \Theta(v_{\rm esc}) - |\vec{v} + \vec{v}_E|)$ normalization

local solar circular velocity

Tien-Tien Yu (University of Oregon)

Galactic escape velocity $v_{\rm esc} \in [450, 600] \text{ km/s}$

Galactic velocity of Earth $v_E \in [215, 245] \text{ km/s}$

$v_0 \in [200, 280] \text{ km/s}$

parameters of SHM

 $f_{\rm SHM}(\vec{v}) = \frac{1}{K} e^{-|\vec{v} + \vec{v}_E|^2 / v_0^2} \Theta(v_{\rm esc} - |\vec{v} + \vec{v}_E|)$ normalization

Tien-Tien Yu (University of Oregon)

Galactic escape velocity $v_{\rm esc} \in [450, 600] \text{ km/s}$

Galactic velocity of Earth $v_E \in [215, 245] \text{ km/s}$

$v_0 \in [200, 280] \text{ km/s}$

parameters of SHM

 $f_{\rm SHM}(\vec{v}) = \frac{1}{K} e^{-|\vec{v} + \vec{v}_E|^2} \sqrt[v_0]{\Theta(v_{\rm esc})} - |\vec{v} + \vec{v}_E|)$ normalization

local solar circular velocity

Tien-Tien Yu (University of Oregon)

Galactic escape velocity $v_{\rm esc} \in [450, 600] \text{ km/s}$

Galactic velocity of Earth $v_E \in [215, 245] \text{ km/s}$

$v_0 \in [200, 280] \text{ km/s}$

Astrophysical Parameters

$$v_0 \, [\mathrm{km/s}]$$

 $v_{\mathrm{esc}} \, [\mathrm{km/s}]$
 $ho_{\mathrm{DM}} \, [\mathrm{GeV/cm}^3]$
 $v_E \, [\mathrm{km/s}]$ 2
 $R_0 \, [\mathrm{kpc}]$

A. Radick, A.M.Taki, TTY JCAP 02 (2021) 004, arXiv:2011.02493

See also D. Baxter et al "Recommended conventions for reporting results from direct dark matter searches" [arXiv:2105.00599]

current	suggested	
220^{+60}_{-20}	228.6 ± 0.34	238
544_{-94}^{+56}	528^{+24}_{-25}	544
0.4	$0.46\substack{+0.07 \\ -0.09}$	0.3
232 ± 15	232 ± 15	
8.0 ± 0.5	8.34 ± 0.16	

The Standard Halo Model

A. Radick, A.M.Taki, TTY JCAP 02 (2021) 004, arXiv:2011.02493

 $R \sim \overline{\sigma}_e \int d^3 \vec{v} \frac{f(\vec{v})}{v} \int d^3 \vec{q} F_{\rm DM}(\vec{q})^2 S(\vec{q}, \omega_{\vec{q}})$

typical energy transfer

Tien-Tien Yu (University of Oregon)

 $\Delta E_e = \vec{q} \cdot \vec{v} - \frac{q^2}{2\mu_{\chi N}}$

arbitrary-size momentum transfer is possible

typical momentum transfer

typical size of the momentum transfer is set by the electron's momentum

 $q_{\rm typ} \simeq m_e$

This requires q on tail of e- wave function or DM velocity!

$$v_e \sim Z_{\mathrm{eff}} \alpha m_e$$

Event Rates

N_e	1		2		3		4	
F_{DM}	1	$(\alpha m_e/q)^2$						
Fiducial	7.8×10^{4}	3.6×10^{4}	$7.9{ imes}10^4$	1.3×10^{4}	1.5×10^{4}	9.9×10^{2}	2.3×10^{3}	67
Updated	9.2×10^{4}	4.3×10^{4}	9.6×10^{4}	1.6×10^{4}	1.9×10^{4}	1.3×10^{3}	3.0×10^{3}	86
rel. diff.	0.17	0.20	0.22	0.25	0.28	0.30	0.30	0.28
$v_{0,min}$	7.5×10^4	3.2×10^{4}	6.6×10^{4}	9.9×10^{3}	1.0×10^{4}	6.2×10^2	1.3×10^{3}	35
$v_{0,max}$	8.7×10^4	4.7×10^{4}	1.1×10^{5}	2.2×10^{4}	3.0×10^{4}	2.3×10^{3}	6.0×10^{3}	2.0×10^{2}
rel. diff.	0.15	0.41	0.58	0.91	1.3	1.7	2.1	2.5
$v_{esc,min}$	$7.7{ imes}10^4$	3.4×10^{4}	7.4×10^{4}	1.1×10^{4}	1.2×10^{4}	6.6×10^2	1.2×10^{3}	25
$v_{esc,max}$	7.9×10^4	3.7×10^{4}	8.0×10^{4}	1.3×10^{4}	1.5×10^{4}	1.1×10^{3}	2.6×10^{3}	85
rel. diff.	0.015	0.057	0.074	0.16	0.27	0.43	0.60	0.89
$v_{E,min}$	7.5×10^4	3.3×10^{4}	7.1×10^{4}	1.1×10^{4}	1.2×10^{4}	7.9×10^{2}	1.7×10^{3}	48
$v_{E,max}$	8.1×10^{4}	3.8×10^{4}	8.6×10^{4}	1.4×10^{4}	1.7×10^{4}	1.2×10^{3}	2.8×10^{3}	85
rel. diff.	0.080	0.14	0.19	0.24	0.32	0.38	0.45	0.55
0.	.0	0.	.1	0.	.5	1	0	

Rel. Diff. = $\frac{\text{Rate}_{\text{max}} - \text{Rate}_{\text{min}}}{-}$ $\operatorname{Rate}_{\operatorname{fid}}$

Tien-Tien Yu (University of Oregon)

Standard Halo Model ($m_{\chi}=10$ MeV)

0.0

, relative difference

N_e	1		2		3		4	
F_{DM}	1	$(\alpha m_e/q)^2$	1	$(\alpha m_e/q)^2$	1	$(\alpha m_e/q)^2$	1	$(\alpha m_e/q)^2$
Fiducial	1.1×10^{3}	5.0×10^{2}	1.7×10^{3}	$2.7{ imes}10^2$	$5.9{ imes}10^2$	39	1.9×10^{2}	5.9
Updated	1.3×10^{3}	5.9×10^{2}	2.0×10^{3}	3.3×10^{2}	$7.2{ imes}10^2$	49	$2.3{ imes}10^2$	7.5
rel. diff.	0.15	0.18	0.18	0.21	0.22	0.25	0.25	0.28
$v_{0,min}$	1.1×10^{3}	4.6×10^{2}	1.6×10^{3}	2.3×10^{2}	4.9×10^{2}	29	1.4×10^{2}	4.0
$v_{0,max}$	1.1×10^{3}	5.9×10^{2}	2.0×10^{3}	3.8×10^{2}	8.5×10^{2}	68	$3.2{ imes}10^2$	12
rel. diff.	-0.00033	0.26	0.21	0.54	0.60	0.98	0.93	1.4
$v_{esc,min}$	1.1×10^{3}	4.8×10^{2}	1.7×10^{3}	$2.5{ imes}10^2$	$5.5{ imes}10^2$	33	1.6×10^2	4.3
$v_{esc,max}$	1.1×10^{3}	5.0×10^{2}	1.7×10^{3}	$2.7{ imes}10^{2}$	6.0×10^2	40.	$1.9{ imes}10^2$	6.3
rel. diff.	-0.0017	0.036	0.024	0.087	0.087	0.18	0.17	0.34
$v_{E,min}$	1.1×10^{3}	4.7×10^{2}	1.6×10^{3}	2.4×10^{2}	$5.3{ imes}10^2$	34	1.6×10^2	4.8
$v_{E,max}$	1.1×10^{3}	5.2×10^{2}	1.8×10^{3}	$2.9{ imes}10^2$	6.4×10^{2}	44	2.1×10^2	6.8
rel. diff.	0.016	0.095	0.092	0.17	0.18	0.26	0.24	0.34

0.0

Rel. Diff. = $\frac{\text{Rate}_{\text{max}} - \text{Rate}_{\text{min}}}{-}$ Rate_{fid}

Tien-Tien Yu (University of Oregon)

Standard Halo Model (m_{χ} =1000 MeV)

0.5

1.0

, relative difference

Cross-section reach

Tien-Tien Yu (University of Oregon)

Standard Halo Model 10^{-38} 10^{-39} $+10^{-40}$ $\frac{1}{2}$ 10⁻⁴¹ $F_{DM} \sim 1/q^2$ 10^{-42} 10^{1} 10^{2} 10^{0} $m_{\chi} \; [{ m MeV}]$ 1 kg-year --- updated A. Radick, A.M.Taki, TTY *JCAP* 02 (2021) 004, arXiv:2011.02493 $--- N_e = 2$ $--- N_e = 3$

GUINEAPIG – September 10, 2022

SHM vs. simulations

Tien-Tien Yu (University of Oregon)

Lisanti, Strigari, Wacker, Wechsler Phys.Rev.D 83 (2011) 023519, arXiv:1010.4300

The Tsallis Model

q > 1

$$S_{\rm BG} = -k \sum_{i} p_i \ln p_i \longrightarrow S_{\rm Tsa} = -k \sum_{i} p_i \dots p_i \longrightarrow S_{\rm Tsa} = -k \sum_{i} p_i \dots p_i \longrightarrow S_{\rm Tsa} = -k \sum_{i} p_i \dots p_i \longrightarrow S_{\rm Tsa} = -k \sum_{i} p_i \dots p_i \longrightarrow S_{\rm Tsa} = -k \sum_{i} p_i \dots p_i \longrightarrow S_{\rm Tsa} = -k \sum_{i} p_i \dots p_i \longrightarrow$$

Tien-Tien Yu (Univers

Empirical Model

Empirical Model

Mao, Strigari, Wechsler, Wu, Hahn Astrophys.J. 764 (2013) 35, arXiv:1210.2721

Halo Models

$$f_{\rm MB}(\vec{v}) \propto \begin{cases} e^{-|\vec{v}|^2/v_0^2} & |\vec{v}| < v_{\rm esc} \\ 0 & |\vec{v}| \ge v_{\rm esc} \end{cases}$$

$$f_{\rm Tsa}(\vec{v}) \propto \begin{cases} \left[1 - (1 - q)\frac{\vec{v}^2}{v_0^2}\right]^{1/(1 - q)} & |\vec{v}| < \\ 0 & |\vec{v}| \ge \end{cases}$$

$$f_{\rm emp}(\vec{v}) \propto \begin{cases} e^{-|\vec{v}|/v_0} \left(v_{\rm esc}^2 - |\vec{v}|^2 \right)^p & |\vec{v}| \\ 0 & |\vec{v}| \end{cases}$$

Tien-Tien Yu (University of Oregon)

Standard Halo Model

Tsallis Model

Empirical Model

EAPIG – September 10, 2022

Comparing models

Tien-Tien Yu (University of Oregon)

GUINEAPIG – September 10, 2022

Comparing models

Comparing models

Summary

- the Standard Halo Model has been the proxy DM halo model for DM direct detection calculations
- SHM is the self-consistent solution for an isotropic, isothermal halo with collisionless Boltzmann equation.
- DM-only simulations deviate from Maxwell-Boltzmann, especially at higher velocities.
- DM+baryon simulations match better with MB, but still have some deviations.
- Predicted DM-electron scattering rates (cross-sections) are sensitive to the choice of halo model and parameters
- the sensitivity is particularly acute for low DM masses and high energy bins, and to the circular velocity

