

In-medium similarity renormalization group with resonance and continuum

2nd Joint Canada-APCTP Meeting on Nuclear Theory

Sp (MeV) 30 20

> Bai-Shan Hu (胡柏山) Aug 9, 2022 **@ TRIUMF**

Outline

I. What is IMSRG? II. Why continuum? III. How to include continuum into IMSRG ^{\$\overline\$} resonance ^{\$\overline\$} halo IV. Summary

Baishan Hu - TRIUMF (2022/8/9)

Workflow of ab-initio nuclear calculation

SM/BSM

QCD+ Electroweak

Realistic nuclear force (NN+NNN)

•Reproduce the **NN** scattering data

 Reproduce few**body properties**

> Chiral EFT, CD-Bonn, Nijmegen, AV18, ...

Currents, $0v\beta\beta$, dark matter, ...

Renormalization scheme

Baishan Hu - TRIUMF (2022/8/9)

Update

•Deal with the strong shortrange correlations

•Speed up the convergence

SRG, $V_{\text{low}-k}$, OLS, UCOM, **G-matrix**

Ab-initio many-body theory

•From the beginning

•Without any additional parameters or uncontrolled approximations

NCSM, GFMC, SCGF, CC, IM-SRG, MBPT,

...

Describe /predict experimental data

drive the Hamiltonian towards a band- or block-diagonal form via continuous unitary transformation

$$U(s) \cdot U^{\dagger}(s) = U(s) \cdot U^{-1}(s) = 1$$

$$H(s) = U(s)H(0)U^{\dagger}(s)$$

$$\frac{dH(s)}{ds} = [\eta(s), H(s)]$$

$$\eta(s) = \frac{dU(s)}{s}U^{\dagger}(s) = -\eta^{\dagger}(s)$$

$$O(s) = U(s)OU^{\dagger}(s)$$

Ş S. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993) F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994)

Soften nucleon-nucleon interaction from 2007

S.K. Bogner, R.J. Furnstahl, R.J. Perry, Phys. Rev. C 75, 061001 (2007) H. Hergert and R. Roth, Phys. Rev. C 75, 051001(R) (2007)

In-medium SRG as a nuclear many-body method Tsukiyama, S. K. Bogner, and A. Schwenk, PRL106, 222502 (2011); PRC85, 061304(R) (2012) H. Hergert, *et al.*, PRL**110**, 242501 (2013)

S.R. Stroberg, *et al.*, Phys. Rev. Lett. 118, 032502 (2017)

Baishan Hu - TRIUMF (2022/8/9)

Developed by Glazek and Wilson and by Wegner around in 1993

SRG: soften nuclear interaction

$$H(s = 0) = T_{rel} + V$$
 $\eta(s) = [T_{rel}]$

$$\frac{dH(s)}{ds} = [\eta(s), H(s)] \qquad \frac{dH(s)}{ds} = \left[[T_{\text{rel}}, H(s)] \right]$$

$$\frac{dV_s(k,k')}{ds} = -(k^2 - k'^2)^2 V_s(k,k') + \frac{2}{\pi} \int_0^\infty q^2 dq (k^2 + k'^2 - 2q^2) V_s(k,k')$$

Baishan Hu - TRIUMF (2022/8/9)

 $(q,q)V_{s}(q,k')$

N_{max} E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, PRL103, 082501 (2009)

In-Medium SRG (IM-SRG)

Ş *H* is normal ordered with a finite-density reference state: $H = E_0 + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\}$ **Generator:** Ş e.g., $\eta(s) \equiv \sum_{ph} \frac{f_{ph}(s)}{\Delta_{ph}(s)} \{a_p^{\dagger}a_h\} + \sum_{pp'hh'} \frac{\Gamma_{pp'hh'}(s)}{\Delta_{pp'hh'}(s)}$

Baishan Hu - TRIUMF (2022/8/9)

$$\frac{d}{dr}\left\{a_{p}^{\dagger}a_{p'}^{\dagger}a_{h'}a_{h}\right\} - H \cdot c$$

νν	v q	qq
0	0	0

 $\langle ij | H(s) | kl \rangle$

CC CV νν VQ

 $\langle ij | H(s) | kl \rangle$

Ab initio results for ²⁰⁸Pb region

Nucleus as an open quantum system

Baishan Hu - TRIUMF (2022/8/9)

- Bound, resonant and scattering states may be strongly coupled
- Need ab initio nuclear theory including the continuum

Why consider the continuum effect?

Baishan Hu - TRIUMF (2022/8/9)

BSHu, Q. Wu, et al., PLB **802** (2020) 135206; arXiv:2001.02832

Resonances

From Wikipedia

Baishan Hu - TRIUMF (2022/8/9)

$$i\hbar\frac{\partial}{\partial t}|\psi\rangle = H|\psi\rangle$$

Time-independent:

$$H|\psi\rangle = E|\psi\rangle \qquad \qquad \psi(t,\mathbf{r}) = \exp\left(-\frac{iE}{\hbar}t\right)\psi(t)$$

probability at *r* is unchanged over time

Complex energy:
$$E = E_0 - i\frac{\Gamma}{2}$$

 $|\psi(t, \mathbf{r})|^2 = \left| \exp\left(-\frac{iE_0}{\hbar}t\right) \exp\left(-\frac{\Gamma}{2\hbar}t\right) \psi(0)\right|^2$
 $= \exp\left(-\frac{\Gamma}{\hbar}t\right) |\psi(0, \mathbf{r})|^2$

Describe a resonance decaying exponentially with half-life $t_{1/2}=\hbar \ln 2/\Gamma$

The wave function of a resonance with a peak at energy e₀ and a width y

$$\Phi(e, \mathbf{r}) = \sqrt{\frac{\gamma/2}{\pi \left[\left(e - e_0 \right)^2 + (\gamma/2)^2 \right]}} \Psi(\mathbf{r})$$

Through Fourier transformation, we obtain time evolution of the resonance

$$\Phi(t,\mathbf{r}) = \Psi(\mathbf{r})e^{-i\widetilde{e}t/\hbar} \qquad \widetilde{e}_n$$

$$\widetilde{e}_n = \frac{\hbar^2 k_n^2}{2m} = e_n - i\frac{\gamma_n}{2} \qquad t_{1/2} = \frac{n\ln 2}{\gamma}$$

Gamow state: complex energy G. Gamow, Z. Phys.51 (1928) 204

Berggren basis in complex-k plane, describing bound, resonance and scattering on equal footing T. Berggren, Nucl. Phys. A109 (1968) 265

$$\delta(r-$$

LI A

Baishan Hu - TRIUMF (2022/8/9)

Orthogonality and completeness: $\delta(r - r') = \sum u_n(\widetilde{e_n}, r)u_n(\widetilde{e_n}, r') +$

^{*n*} bound, resonance

 $d\widetilde{e}u(\widetilde{e},r)u\left(\widetilde{e},r'\right)$

 JL^+ scattering (discretized)

Re(k)

Gamow Hartree-Fock

Step①: Solve the HF equations in HO representation

$$H_{\text{int}} = \sum_{i=1}^{A} \left(1 - \frac{1}{A} \right) \frac{\overrightarrow{p}_{i}^{2}}{2m} + \sum_{i < j}^{A} \left(V_{NN,ij} - \frac{\overrightarrow{p}_{i} \cdot \overrightarrow{p}_{j}}{mA} \right)$$

Step@: Extract the non-local HF potential v(r,r') $h_{ij}^{\rm HF} = \langle i \,|\, t \,|\, j \rangle + \langle i \,|\, v \,|\, j \rangle = \langle i \,|\, t \,|\, j \rangle + \sum_{i=1}^{N} \langle ik \,|\, V \,|\, jk \rangle$ k=1

Step®: Obtain the radial wave function *u(r)/r* **in complex-***k* **plane** $u''(r) = \left[\frac{l(l+1)}{r^2} + v^{(\text{loc})}(r) - k^2\right]u(r) + \int_0^{+\infty} v^{(\text{non-loc})}(r, r')u(r')dr'$ $\begin{cases} u(\widetilde{e}, r) \sim C_0 r^{l+1} & r \to 0\\ u(\widetilde{e}, r) \sim C^+ H_{l\eta}^+(kr) + C^- H_{l\eta}^-(kr) & r \to +\infty \end{cases}$ **Resonance:** outgoing $u_n\left(\tilde{e}_n,r\right)\sim O_l\left(k_nr\right)\sim e^{ik_nr}$

Baishan Hu - TRIUMF (2022/8/9)

 $\widetilde{e}_n = \frac{\hbar^2 k_n^2}{2m} = e_n - i\frac{\gamma_n}{2}$

G. Gamow, Z. Phys.51 (1928) 204

exterior complex scaling

$$\int_{0}^{+\infty} u(\tilde{e}, r)^{2} dr = \int_{0}^{R} u(\tilde{e}, r)^{2} dr + (C^{+})^{2} \int_{R}^{+\infty} H_{l\eta}^{+} (kr)^{2} dr$$

$$= \int_0^R u(\widetilde{e}, r)^2 dr + (C^+)^2 \int_0^{+\infty} H_{l\eta}^+ \left(kR + kxe^{i\theta}\right)^2 e^{i\theta} dx$$

sp energies Re

$0s_{1/2}$ -48

Results of GHF

- $0p_{3/2}$ -22
- $0p_{1/2}$ -13
- $0d_{5/2}$
- $1s_{1/2}$
- $0d_{3/2}$

Baishan Hu - TRIUMF (2022/8/9)

¹⁶ O		²² (C	24(C	²⁸ O				
e(E) Im(E)		$\operatorname{Re}(\mathrm{E})$	Im(E)	Re(E)	Re(E) Im(E) Re(Im(E)			
8.8 <mark>58</mark>	0.000	-57.720	0.000	-59.313	0.000	-55.076	0.000			
2.735	0.000	-27.729	0.000	-28.132	0.000	-28.101	0.000			
3.863	0.000	-23.501	0.000	-22.669	0.000	-21.674	0.000			
		-3.251	0.000	-3.993	0.000	-6.687	0.000			
	1 <u></u>	-0.964	0.000	-2.374	0.000	-3.978	0.000			
		3.014	-0.626	2.312	-0.368	1.088	-0.081			

sp resonance

14

NCSM CC GFMC IM-SRG

Baishan Hu - TRIUMF (2022/8/9)

IM-SRG with resonance and continuum

Include continuum degree of freedom into IM-SRG via **Gamow-Berggren ensemble (Gamow Hartree-Fock)**

Extend the continuous unitary transformation (Hermitian) to the orthogonal transformation (complex symmetric)

Describe bound, resonance and continuum states in a unified framework

Baishan Hu - TRIUMF (2022/8/9)

Combine with resonating group method (RGM) for nuclear

IMSRG
Hermitian (HO/HF basis)
$$dH(s)$$
 $\langle a | H | b \rangle = \langle b | H | a \rangle^*$ $dH(s)$ $H(s) = U(s)H(0)U^{\dagger}(s)$ $H(s) = U(s)HU^{-1}(s)$ $U(s) \cdot U^{\dagger}(s) = U(s) \cdot U^{-1}(s) = 1$ $H(s) = U(s)HU^{-1}(s)$ $\eta(s) = \frac{dU(s)}{s}U^{\dagger}(s) = -\eta^{\dagger}(s)$ $O(s) = U(s)OU^{-1}(s)$

Magnus expansion:

T.D. Morris, N.M. Parzuchowski, and S.K. Bogner, PRC92 (2015) 034331 $U(s) = e^{\Omega(s)}$

$$\frac{d\Omega(s)}{ds} = \eta(s) + \frac{1}{2}[\Omega(s), \eta(s)] + \frac{1}{12}[\Omega(s), [\Omega(s), \eta(s)]] + \cdots$$
$$H(s) = e^{\Omega(s)}He^{-\Omega(s)} = H + [\Omega(s), H] + \frac{1}{2}[\Omega(s), [\Omega(s), H]] + \cdots$$
$$O(s) = e^{\Omega(s)}Oe^{-\Omega(s)} = O + [\Omega(s), O] + \frac{1}{2}[\Omega(s), [\Omega(s), O]] + \cdots$$

Baishan Hu - TRIUMF (2022/8/9)

IMSRG framework

Gamow IMSRG
Complex symmetric (Berggren base)

$$\langle \widetilde{\alpha} | H | \beta \rangle = \langle \widetilde{\beta} | H | \alpha \rangle^* = \langle \beta | H | \widetilde{\alpha}$$

 $H(s) = U(s)H(0)U^T(s)$
 $U(s) \cdot U^T(s) = U(s) \cdot U^{-1}(s) = 1$
 $\eta(s) = \frac{dU(s)}{s}U^T(s) = -\eta^T(s)$

$$\begin{split} \eta_{12} &= \frac{f_{12}}{f_{11} - f_{22} + \Gamma_{1212}} \\ \eta_{1234} &= \frac{\Gamma_{1234}}{f_{11} + f_{22} - f_{33} - f_{44} + A_{1234}} \\ A_{1234} &= \Gamma_{1212} + \Gamma_{3434} - \Gamma_{1313} - \Gamma_{24} \\ -\Gamma_{1414} - \Gamma_{2323} \end{split}$$

Perform all calculations at two-body level — IMSRG(2)

17

< ij| H(s = 0) | kl >Baishan Hu - TRIUMF (2022/8/9)

 $H^{\text{od}} \equiv \langle \boldsymbol{v} | H | \boldsymbol{c} \rangle + \langle \boldsymbol{q} | H | \boldsymbol{c} \rangle$ $+\langle \mathbf{v}\mathbf{v} | H | \mathbf{c}\mathbf{c} \rangle + \langle \mathbf{q}\mathbf{v} | H | \mathbf{c}\mathbf{c} \rangle$ $+\langle qq | H | cc \rangle$

 $\langle ij | H(s) | kl \rangle$

 $H = E_0 + \sum_{i:i} f_{ij} \left\{ a_i^{\dagger} a_j \right\} + \frac{1}{4} \sum_{i:j \neq l} \Gamma_{ijkl} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{36} \sum_{i:k} W_{ijklmn} \left\{ a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l \right\}$

EOM-IMSRG closed-shell nuclei

VS-IMSRG shell-model effective interaction

 $H^{\text{od}} \equiv \langle \mathbf{v} | H | \mathbf{c} \rangle + \langle \mathbf{q} | H | \mathbf{c} \rangle + \langle \mathbf{q} | H | \mathbf{v} \rangle$ $+\langle \mathbf{v}\mathbf{v} | H | \mathbf{c}\mathbf{c} \rangle + \langle \mathbf{q}\mathbf{v} | H | \mathbf{c}\mathbf{c} \rangle + \langle \mathbf{q}\mathbf{q} | H | \mathbf{c}\mathbf{c} \rangle$ $+\langle \mathbf{vv} | H | \mathbf{vc} \rangle + \langle q\mathbf{v} | H | \mathbf{vc} \rangle + \langle qq | H | \mathbf{vc} \rangle$ $+\langle qv | H | vv \rangle + \langle qq | H | vv \rangle$

 $\langle ij | H(s) | kl \rangle$

Difficulties caused by continuum states < vv | H^{od} | vq > !!!

Baishan Hu - TRIUMF (2022/8/9)

$$s) = e^{\eta(s)}He^{-\eta(s)} = H + [\eta(s), H] + \frac{1}{2}[\eta(s), [\eta(s), H]] + \cdots$$
$$\left\langle v \left| \eta^{\text{White}} \right| q \right\rangle = \frac{\langle v | H^{od} | q \rangle}{\langle v | H^{d} | v \rangle - \langle q | H^{d} | q \rangle}$$

< v | H^d | v > close to < q | H^d | q > : generates high-order terms in the transformation of H

$$\theta = \frac{1}{2} \tan^{-1} [2a/(E_l - E_r)].$$

magnitude. Note that the degenerate case $E_l = E_r$ is nonsingular, generating an angle of $\pm \pi/4$ (either angle can be chosen). Such a large transformation angle should be avoided if possible, however, since it generates high-order terms in the transformation of *H*.

S.R. White, J. Chem. Phys. 117 (2002) 7472

IMSRG(3) or ...

Similar to many-multi-shells effective interaction $\left\langle v \left| \eta^{\text{White}} \right| q \right\rangle = \frac{\left\langle v \left| H^{od} \right| q \right\rangle}{\left\langle v \left| H^{d} \right| v \right\rangle - \left\langle q \left| H^{d} \right| q \right\rangle}$

S

2

2

0

dd

Baishan Hu - TRIUMF (2022/8/9)

$$\omega = Q\omega P \qquad \langle \alpha_Q | \omega | \alpha_P \rangle = \sum_{k \in \kappa} \langle \alpha_Q | k \rangle \langle \tilde{k} | \alpha_P \rangle$$

 $\bar{H}_{eff} = [P(1 + \omega^T \omega)P]^{-1/2} (P + P\omega^T Q) H(P + Q\omega P) [P(1 + \omega^T \omega)P]^{-1/2}$

VS-IMSRG with **OLS**

EM1.8/2.0(NN + 3N), emax = 12, e3max = 16, $\hbar\omega = 16$ MeV

BS Hu, et al., In preparation (2022)

Baishan Hu - TRIUMF (2022/8/9)

Using ensemble normal ordering (ENO) Without continuum

²²Na ⁴⁸Ni 8 2 +6 5^{+} 5 (MeV) **γ**+ Energy 6 2 0^+ 0 -349.43 -349.42 -172.03 IMSRG(OLS) IMSRG(OLS) IMSRG

Gamow EOM-IMSRG results

Convergence against different contour and discretization number

Baishan Hu - TRIUMF (2022/8/9)

BSHu, Q. Wu, et al., PRC **99** (2019) 061302(R); arXiv:1906.10539

Center-of-mass spurious excitation

EOM-IMSRG for Borromean ²²C

BSHu, Q. Wu, et al., PRC **99** (2019) 061302(R); arXiv:1906.10539

Baishan Hu - TRIUMF (2022/8/9)

NNLOsat	R-IMSRG	G-IMSRG cont. <i>s</i> , <i>d</i> waves	Exp ⁻ Estima
matter radius (fm)	2.98	3.14	3.44 ± 0 3.38 ± 0

1: Y. Togano *et al.*, PLB**761** (2016) 412

❷: T. Nagahisa and W. Horiuchi, PRC97 (2018) 054614

Benchmark with NCSMC

Core: ⁴He

Valence space: neutron p_{1/2}, p_{3/2} resonances and **S**_{1/2}, **p**_{1/2}, **p**_{3/2}, **d**_{5/2} **continua**

N⁴LO(500), $\lambda_{SRG} = 2.4 \text{ fm}^{-1}$, $\hbar\Omega = 20 \text{ MeV}$

$E_{\rm g.s.}~({\rm MeV})$	$^{4}\mathrm{He}$	⁶ He	⁸ He
IMSRG(ENO)	-28.50	-28.25	-29.47
NCSM	-28.36	-28.94(20)	-30.23(30)
Expt.	-28.30	-29.27	-31.41

	Primary Stabl	Decay M e	ode 2β+								⁵⁴ Zn	⁵⁵ Zn	⁵⁶ Zn	⁵ ⁷ Zn	⁵⁸ Zn	⁵⁹ Zn	60			—		
	β- 2β- n 2n		p 2p 3p a			5		2		⁵² Cu	⁵³ Cu	⁵⁴ Cu	⁵⁵ Cu	⁵℃u	⁵⁷ Cu	⁵ ⁸ Cu	5	$\widehat{}$	5	<u></u>	• 1	
	e- ca e+ β+	pture	Fissio	on			⁴⁸ Ni	⁴⁹ Ni	⁵⁰ Ni	⁵¹ Ni	⁵² Ni	⁵³ Ni	⁵⁴ Ni	⁵⁵ Ni	⁵⁶ Ni	⁵⁷ Ni	5	MeV	4	Ē		
	Long Estim	-lived nated	Unkn	own			47 Co	⁴⁸ Co	⁴⁹ Co	⁵⁰ Co	⁵¹ Co	⁵² Co	⁵³ Co	⁵⁴ Co	⁵⁵ Co	⁵⁶ Co	5	y C	3	Ē		
						⁴⁵ Fe	⁴⁶ Fe	⁴7Fe	⁴⁸ Fe	⁴⁹ Fe	⁵⁰ Fe	⁵¹ Fe	⁵² Fe	⁵³ Fe	⁵⁴ Fe	⁵⁵Fe	Ę	lerg	2	Ē		
					⁴³ Mn	⁴⁴ Mn	⁴⁵ Mn	46Mn	⁴⁷ Mn	⁴⁸ Mn	⁴⁹ Mn	⁵⁰ Mn	⁵¹ Mn	⁵² Mn	⁵³ Mn	⁵⁴ Mn	5	Ē	Z	Ē•		_
				⁴¹ Cr	⁴² Cr	⁴³Cr	⁴⁴Cr	⁴⁵Cr	⁴⁶ Cr	⁴⁷ Cr	⁴⁸ Cr	⁴⁹ Cr	⁵⁰ Cr	⁵¹ Cr	⁵² Cr	⁵³ Cr		\mathcal{O}^{T}	1	Ē	•	
			³⁹ V	⁴⁰ V	⁴¹ V	⁴² V	⁴³ V	44V	⁴⁵ V	⁴⁶ V	47V	⁴⁸ V	⁴⁹ V	⁵⁰ V	⁵¹ V	⁵² V			0	F		
		³⁷ Ti	³⁸ Ti	³⁹ Ti	⁴⁰ Ti	⁴¹ Ti	⁴² Ti	⁴³ Ti	⁴⁴ Ti	⁴⁵ Ti	⁴⁶ Ti	⁴⁷ Ti	⁴⁸ Ti	⁴⁹ Ti	⁵⁰ Ti	⁵¹ Ti						
	³⁵ Sc	³⁶ Sc	³⁷ Sc	³⁸ Sc	³⁹ Sc	⁴⁰ Sc	⁴¹ Sc	⁴² Sc	⁴³ Sc	⁴⁴ Sc	⁴⁵ Sc	⁴⁶ Sc	⁴⁷ Sc	⁴⁸ Sc	⁴⁹ Sc	⁵⁰ Sc						
³³ Ca	³⁴ Ca	³⁵ Ca	³⁶ Ca	³⁷ Ca	³⁸ Ca	³⁹ Cε	⁴⁰ Ca	⁴¹Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁵ Ca	⁴⁶ Ca	⁴⁷ Ca	⁴⁸ Ca	⁴⁹ Ca					44	ł
																10						

Baishan Hu - TRIUMF (2022/8/9)

MBPT (NN+3NF)

Gamow VS-IMSRG results

Baishan Hu - TRIUMF (2022/8/9)

Gamow VS-IMSRG results

EOM-IMSRG

Baishan Hu - TRIUMF (2022/8/9)

28

Collaborators:

Jason Holt (TRIUMF) Petr Navrátil (TRIUMF) Nicole Vassh (TRIUMF) Takayuki Miyagi (TU Darmstadt) Ragnar Stroberg (ANL) Gaute Hagen (ORNL) Zhonghao Sun (ORNL) Jeremy Holt (Texas A&M U) Furong Xu (PKU) Nicolas Michel (IMP)

Thank you Merci

