Skyrmions and Collective Isospin Dynamics

Nicholas S. Manton

DAMTP, University of Cambridge

N.S.Manton@damtp.cam.ac.uk

2nd Canada-APCTP Meeting on Nuclear Theory TRIUMF, August 2022

Skyrmions - A Review

- Skyrme theory is nonlinear, effective field theory (EFT) of pions [T.H.R. Skyrme, 1961]. Its field equations have topological soliton solutions - Skyrmions - with surprising shapes.
- Skyrmions represent nucleons and larger nuclei. No explicit nucleon fields appear. Skyrme theory is "Nuclear Physics without Nucleons" [lachello].
- Skyrme field

$$
U(x)=\sigma(x) \mathbf{1}_{2}+i \boldsymbol{\pi}(x) \cdot \boldsymbol{\tau}
$$

requires $\sigma^{2}+\pi \cdot \pi=1$, so $U \in S U(2)$. Field is smooth and needs no short-distance cutoff.

- $U \rightarrow \mathbf{1}_{2}$ asymptotically, and $U \simeq-1_{2}$ in core of nucleons.
- Topological charge - the topological degree of U over space - is identified with baryon number B (atomic mass number).
- Skyrme field Lagrangian

$$
\begin{aligned}
L= & \int \frac{1}{2} \operatorname{Tr}\left(\partial_{\mu} \cup \partial^{\mu} U^{\dagger}\right) d^{3} x \\
& + \text { higher order derivative terms }+ \text { pion mass term }
\end{aligned}
$$

- Solve field equations to determine Skyrmion solutions and their symmetries, energies, spin/isospin moments of inertia, vibrational frequencies.
- Skyrmions assign an intrinsic geometrical shape and pion field structure to nuclei. They spontaneously break the translational, rotational and isorotational symmetries of L.
- An intrinsic (non-spherical) shape is familiar in nuclear physics [Wheeler, Wefelmeier, Bohr-Mottelson]. An intrinsic pion field structure is less familiar.
- Rigid-body quantization restores these symmetries. The ground and excited states of nuclei are classified by (momentum \mathbf{P}), spin J and isospin I.
- Evidence for the pion field structure comes from the correlated constraints on spin/isospin.

Skyrmions with Small Baryon Numbers

$B=1$ Skyrmion in two orientations. These attract, clump together and slightly merge to form larger- B Skyrmions. (Colours indicate unit-pion-field values on constant energy density surface.)

Classically spinning $B=1$ Skyrmions, modelling quantized spin/isospin $\frac{1}{2}$ nucleons [Foster and NSM]. Spin/isospin $\frac{3}{2}$ delta resonances spin faster. Wavefunctions change sign under 2π rotation [Skyrme].

$B=2$ Skyrmion

Scattering $B=1$ Skyrmions [Foster and Krusch]

$B=3$ Skyrmion [Braaten et al.]

$B=4$ Skyrmion

Runge Colouring Scheme

- Figures show a surface of constant energy density (away from the Skyrmion centres where $\sigma=-1$).
- The unit pion field $\hat{\boldsymbol{\pi}}$ is indicated using the Runge colour sphere.
- White: $\hat{\boldsymbol{\pi}}=(0,0,1)$,
- Black: $\hat{\boldsymbol{\pi}}=(0,0,-1)$,
- Red, Green, Blue: $\hat{\pi}=(1,0,0),\left(\cos \left(\frac{2 \pi}{3}\right), \sin \left(\frac{2 \pi}{3}\right), 0\right),\left(\cos \left(\frac{4 \pi}{3}\right), \sin \left(\frac{4 \pi}{3}\right), 0\right)$.

Rigid-body Quantization - Spin J and Isospin /

- Skyrmions quantized as rigid bodies represent nuclei. Skyrmion symmetries and topology constrain ground state spin/isospin [Finkelstein and Rubinstein; Adkins, Nappi and Witten; Braaten and Carson; Walhout; Krusch].
- $B=1$: Proton and neutron, with spin $J=\frac{1}{2}$ and isospin $I=\frac{1}{2}$. Excited states (Delta-resonances) have $J=I=\frac{3}{2}$.
- $B=2:{ }^{2} \mathrm{H}$ (Deuteron), with $J=1$ and $I=0$.
- $B=3:{ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$, with $J=\frac{1}{2}$ and $I=\frac{1}{2}$.
- $B=4:{ }^{4} \mathrm{He}$ (Alpha particle), with $J=I=0$.

Quantized $B=4$ Cube

- $B=4$ Skyrmion has cubic symmetry and

Finkelstein-Rubinstein constraints (for two generators)

$$
\begin{aligned}
e^{i \frac{2 \pi}{3} \frac{1}{\sqrt{3}}\left(L_{1}+L_{2}+L_{3}\right)} e^{i \frac{2 \pi}{3} K_{3}}|\Psi\rangle & =|\Psi\rangle \\
e^{i \frac{\pi}{2} L_{3}} e^{i \pi K_{1}}|\Psi\rangle & =|\Psi\rangle .
\end{aligned}
$$

L_{i}, K_{i} are spin and isospin operators w.r.t. body-fixed axes.

- Use basis states $\left|J, L_{3}\right\rangle \otimes\left|I, K_{3}\right\rangle$. Only certain linear combinations are allowed.
- Space-fixed projections J_{3}, I_{3} not constrained - get full spin/isospin multiplets.
- Parity operator (effect of inversion in space and isospace) is $\mathcal{P}=e^{i \pi K_{3}}$.
- Lowest-energy allowed states:

Isospin $0\left({ }^{4} \mathrm{He}\right)$ with $J^{P}=0^{+}, 4^{+}$
Isospin $1\left({ }^{4} \mathrm{H},{ }^{4} \mathrm{He},{ }^{4} \mathrm{Li}\right)$ with $J^{P}=2^{-}$
Isospin 2 (4-neutron) with $J^{P}=0^{+}$.

- Physical interpretation:

Isospin 0: Lowest state is ${ }^{4} \mathrm{He}$ ground state; highly-excited 4^{+}state not observed.

Isospin 1: Multiplet of well-known resonances at 24 MeV .
Isospin 2: State $|0,0\rangle \otimes|2,0\rangle$ matches 4-neutron resonance recently observed at $\sim 30 \mathrm{MeV}$.

- Further ${ }^{4} \mathrm{He}$ resonances are modelled by vibrating $B=4$ cube [Rawlinson].

$$
B=6 \text { Skyrmion }
$$

$B=6$ States

- $B=6$ Skyrmion has $D_{4 d}$ symmetry and Finkelstein-Rubinstein constraints [Wood]

$$
\begin{aligned}
e^{i \frac{\pi}{2} L_{3}} e^{i \pi K_{3}}|\Psi\rangle & =|\Psi\rangle \\
e^{i \pi L_{1}} e^{i \pi K_{1}}|\Psi\rangle & =-|\Psi\rangle
\end{aligned}
$$

- Parity $\mathcal{P}=e^{i \frac{\pi}{4} L_{3}} e^{-i \frac{\pi}{2} K_{3}}$.
- Allowed isospin 0 states ($\left.{ }^{6} \mathrm{Li}\right)$:

$$
J^{P}=1^{+}, 3^{+}, 4^{-}, 5^{+}, 5^{-}, \cdots
$$

isospin 1 states $\left({ }^{6} \mathrm{He},{ }^{6} \mathrm{Li},{ }^{6} \mathrm{Be}\right)$:

$$
J^{P}=0^{+}, 2^{+}, 2^{-}, \cdots
$$

and isospin 2 state ${ }^{6} \mathrm{H}$ with predicted $J^{P}=0^{-}$.

- Quite good fit to $B=6$ nuclei.

Energy levels of $B=6$ nuclei

Some Higher B Skyrmions

$B=7$ Skyrmion and its deformation into clusters. Deformed Skyrmion models $\frac{3}{2}^{-}$ground states of ${ }^{7} \mathrm{Be} /{ }^{7} \mathrm{Li}$. The quantized icosahedral Skyrmion models excited $\frac{7}{2}^{-}$states, and 'ground' $\frac{3}{2}^{-}$states of isospin quartet including ${ }^{7} \mathrm{He}$.

$$
B=8 \text { Skyrmion }\left(m_{\pi}=1\right)
$$

$B=10$ Skyrmion

$B=12$ Skyrmion with $D_{3 h}$ symmetry

$B=12$ Skyrmion with $D_{4 h}$ symmetry

Carbon-12 states in the ground state band and Hoyle band

Beta-Decay of Nuclei

- Not yet calculated using Skyrmions, except for $B=1$ [Adkins, Nappi and Witten] and $B=3$ [Carson].
- Matrix elements involve isospin lowering/raising operator acting on rigid-body state, and an integral depending on the classical Skyrmion solution. This is for the dominant allowed transition within a single isospin multiplet, if energetically available.
- Calculations of beta-decay of ${ }^{6} \mathrm{He},{ }^{12} \mathrm{~N}$ and ${ }^{14} \mathrm{C}$ are feasible, using known Skyrmions.

Spin-Orbit Coupling

- Nucleon-nucleon potentials including spin-orbit coupling partly understood using Skyrmions [Harland and Halcrow]. A $B=1$ Skyrmion interacting with a planar Skyrmion surface also studied [Harland and NSM]. The pion field structure is essential.
- The $B=1$ Skyrmion prefers to roll (classically) over the surface. This corresponds to spin and orbital angular momentum being parallel for a $B=1$ Skyrmion orbiting a magic nucleus.
- Quantum calculations are more difficult. 2nd-order perturbation theory, or a tight-binding approximation, are needed.

Coloured disc (cog) rolling on a coloured rail (Halcrow)

A Skyrmion above a half-filled FCC crystal of Skyrmions (Harland and NSM)

The path of a rolling Skyrmion

Conclusions

- Skyrmions give correlated intrinsic shapes and pion field structures to nuclei.
- Rigid-body quantization restores rotational/isorotational symmetry. Nuclear states acquire constrained spin/isospin combinations. Results up to Carbon-12 and its isobars mostly satisfactory.
- Energy spectrum calculated using spin/isospin moments of inertia. Isospin energy matches Bethe-Weizsäcker asymmetry energy. Collective isospin dynamics is key signature of Skyrmion models of nuclei.
- Vibrational excitations of Skyrmions needed to model e.g. Helium-4 resonances, and Calcium-40 spectrum.
- Spin-orbit coupling and beta-decay matrix elements depend on pion field structure - further test of Skyrmion picture.

SKYRMIONS

A THEORY OF NUCLEI

Nicholas S Manton
University of Cambridge, UK

WorldsciNet

EXTRA SLIDES

$$
\begin{aligned}
& \text { Energy } \\
& \text { (:- }
\end{aligned}
$$

Carbon-12 energy levels [Rawlinson], allowing for interpolation between triangular and chain Skyrmions: Experiment, Skyrme model

- Bending mode between triangle and chain Skyrmions is excited in Hoyle state, and needed to model 1^{-}and 2^{-} states of Carbon-12.
- $B=10$ Skyrmion is "molecule" with 2-alphas/2-nucleons. Good for Boron-10, but rigid-body quantization misses negative-parity states. Bending mode probably needed to model $1^{-}, 2^{-}, 3^{-}$states?
- Two joined-up $B=10$ Skyrmions may model some states of Neon-20.
- Gudnason and Halcrow have website "Database of Skyrmion Vibrations", showing vibrational modes up to $B=8$.

$B=20$ Skyrmion [Lau, Halcrow]

Icosahedral $B=208$ Skyrmion [Halcrow]

