Skyrmions and Collective Isospin Dynamics

Nicholas S. Manton

DAMTP, University of Cambridge

N.S.Manton@damtp.cam.ac.uk

2nd Canada-APCTP Meeting on Nuclear Theory TRIUMF, August 2022

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Skyrmions – A Review

- Skyrme theory is nonlinear, effective field theory (EFT) of pions [T.H.R. Skyrme, 1961]. Its field equations have topological soliton solutions – Skyrmions – with surprising shapes.
- Skyrmions represent nucleons and larger nuclei. No explicit nucleon fields appear. Skyrme theory is "Nuclear Physics without Nucleons" [lachello].
- Skyrme field

$$U(x) = \sigma(x) \mathbf{1}_2 + i\pi(x) \cdot \tau$$

requires $\sigma^2 + \pi \cdot \pi = 1$, so $U \in SU(2)$. Field is smooth and needs no short-distance cutoff.

▶ $U \rightarrow \mathbf{1}_2$ asymptotically, and $U \simeq -\mathbf{1}_2$ in core of nucleons.

- Topological charge the topological degree of U over space – is identified with baryon number B (atomic mass number).
- Skyrme field Lagrangian

$$L = \int \frac{1}{2} \operatorname{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) d^{3}x$$

+ higher order derivative terms + pion mass term .

Solve field equations to determine Skyrmion solutions and their symmetries, energies, spin/isospin moments of inertia, vibrational frequencies.

- Skyrmions assign an intrinsic geometrical shape and pion field structure to nuclei. They spontaneously break the translational, rotational and isorotational symmetries of *L*.
- An intrinsic (non-spherical) shape is familiar in nuclear physics [Wheeler, Wefelmeier, Bohr–Mottelson]. An intrinsic pion field structure is less familiar.
- Rigid-body quantization restores these symmetries. The ground and excited states of nuclei are classified by (momentum P), spin J and isospin I.

Evidence for the pion field structure comes from the correlated constraints on spin/isospin.

Skyrmions with Small Baryon Numbers

B = 1 Skyrmion in two orientations. These attract, clump together and slightly merge to form larger-*B* Skyrmions. (Colours indicate unit-pion-field values on constant energy density surface.)

・ロト ・四ト ・ヨト ・ヨト

Classically spinning B = 1 Skyrmions, modelling quantized spin/isospin $\frac{1}{2}$ nucleons [Foster and NSM]. Spin/isospin $\frac{3}{2}$ delta resonances spin faster. Wavefunctions change sign under 2π rotation [Skyrme].

B = 2 Skyrmion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

・ロト・日本・日本・日本・日本

B = 3 Skyrmion [Braaten et al.]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

B = 4 Skyrmion

Runge Colouring Scheme

- Figures show a surface of constant energy density (away from the Skyrmion centres where $\sigma = -1$).
- The unit pion field $\hat{\pi}$ is indicated using the Runge colour sphere.
- White: $\hat{\pi} = (0, 0, 1)$,
- Black: $\hat{\pi} = (0, 0, -1)$,
- ► Red, Green, Blue: $\hat{\pi} = (1, 0, 0), (\cos(\frac{2\pi}{3}), \sin(\frac{2\pi}{3}), 0), (\cos(\frac{4\pi}{3}), \sin(\frac{4\pi}{3}), 0).$

Rigid-body Quantization – Spin *J* and Isospin *I*

- Skyrmions quantized as rigid bodies represent nuclei. Skyrmion symmetries and topology constrain ground state spin/isospin [Finkelstein and Rubinstein; Adkins, Nappi and Witten; Braaten and Carson; Walhout; Krusch].
- ▶ B = 1: Proton and neutron, with spin $J = \frac{1}{2}$ and isospin $I = \frac{1}{2}$. Excited states (Delta-resonances) have $J = I = \frac{3}{2}$.

- ▶ B = 2: ²H (Deuteron), with J = 1 and I = 0.
- B = 3: ³H and ³He, with $J = \frac{1}{2}$ and $I = \frac{1}{2}$.
- B = 4: ⁴He (Alpha particle), with J = I = 0.

Quantized B = 4 Cube

 B = 4 Skyrmion has cubic symmetry and Finkelstein–Rubinstein constraints (for two generators)

$$e^{irac{2\pi}{3}rac{1}{\sqrt{3}}(L_1+L_2+L_3)}e^{irac{2\pi}{3}K_3}|\Psi
angle \ = \ |\Psi
angle \ e^{irac{\pi}{2}L_3}e^{i\pi K_1}|\Psi
angle \ = \ |\Psi
angle .$$

 L_i , K_i are spin and isospin operators w.r.t. body-fixed axes.

- ► Use basis states $|J, L_3\rangle \otimes |I, K_3\rangle$. Only certain linear combinations are allowed.
- Space-fixed projections J₃, I₃ not constrained get full spin/isospin multiplets.
- Parity operator (effect of inversion in space and isospace) is $\mathcal{P} = e^{i\pi K_3}$.

 Lowest-energy allowed states: Isospin 0 (⁴He) with J^P = 0⁺, 4⁺ Isospin 1 (⁴H, ⁴He, ⁴Li) with J^P = 2⁻ Isospin 2 (4-neutron) with J^P = 0⁺.

Physical interpretation:

Isospin 0: Lowest state is 4 He ground state; highly-excited 4^{+} state not observed.

Isospin 1: Multiplet of well-known resonances at 24 MeV.

Isospin 2: State $|0,0\rangle \otimes |2,0\rangle$ matches 4-neutron resonance recently observed at \sim 30 MeV.

Further ⁴He resonances are modelled by vibrating B = 4 cube [Rawlinson].

B = 6 Skyrmion

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

B = 6 States

 B = 6 Skyrmion has D_{4d} symmetry and Finkelstein–Rubinstein constraints [Wood]

$$egin{array}{rll} e^{irac{\pi}{2}\mathcal{L}_3}e^{i\pi\mathcal{K}_3}|\Psi
angle &=& |\Psi
angle \ e^{i\pi\mathcal{L}_1}e^{i\pi\mathcal{K}_1}|\Psi
angle &=& -|\Psi
angle \end{array}$$

• Parity
$$\mathcal{P} = e^{i\frac{\pi}{4}L_3}e^{-i\frac{\pi}{2}K_3}$$
.

Allowed isospin 0 states (⁶Li):

$$J^P = 1^+, 3^+, 4^-, 5^+, 5^-, \cdots,$$

isospin 1 states (⁶He,⁶Li,⁶Be):

$$J^{P} = 0^{+}, 2^{+}, 2^{-}, \cdots,$$

and isospin 2 state ⁶H with predicted $J^P = 0^-$.

• Quite good fit to B = 6 nuclei.

Energy levels of B = 6 nuclei

Some Higher **B** Skyrmions

B = 7 Skyrmion and its deformation into clusters. Deformed Skyrmion models $\frac{3}{2}^{-}$ ground states of $^{7}\text{Be}/^{7}\text{Li}$. The quantized icosahedral Skyrmion models excited $\frac{7}{2}^{-}$ states, and 'ground' $\frac{3}{2}^{-}$ states of isospin quartet including ⁷He.

B = 8 Skyrmion ($m_{\pi} = 1$)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

B = 10 Skyrmion

B = 12 Skyrmion with D_{3h} symmetry

B = 12 Skyrmion with D_{4h} symmetry

Carbon-12 states in the ground state band and Hoyle band

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Beta-Decay of Nuclei

- Not yet calculated using Skyrmions, except for B = 1 [Adkins, Nappi and Witten] and B = 3 [Carson].
- Matrix elements involve isospin lowering/raising operator acting on rigid-body state, and an integral depending on the classical Skyrmion solution. This is for the dominant allowed transition within a single isospin multiplet, if energetically available.

(日) (日) (日) (日) (日) (日) (日)

 Calculations of beta-decay of ⁶He, ¹²N and ¹⁴C are feasible, using known Skyrmions.

Spin-Orbit Coupling

- Nucleon-nucleon potentials including spin-orbit coupling partly understood using Skyrmions [Harland and Halcrow].
 A B = 1 Skyrmion interacting with a planar Skyrmion surface also studied [Harland and NSM]. The pion field structure is essential.
- The B = 1 Skyrmion prefers to roll (classically) over the surface. This corresponds to spin and orbital angular momentum being parallel for a B = 1 Skyrmion orbiting a magic nucleus.
- Quantum calculations are more difficult. 2nd-order perturbation theory, or a tight-binding approximation, are needed.

Coloured disc (cog) rolling on a coloured rail (Halcrow)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A Skyrmion above a half-filled FCC crystal of Skyrmions (Harland and NSM)

The path of a rolling Skyrmion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Conclusions

- Skyrmions give correlated intrinsic shapes and pion field structures to nuclei.
- Rigid-body quantization restores rotational/isorotational symmetry. Nuclear states acquire constrained spin/isospin combinations. Results up to Carbon-12 and its isobars mostly satisfactory.
- Energy spectrum calculated using spin/isospin moments of inertia. Isospin energy matches Bethe-Weizsäcker asymmetry energy. Collective isospin dynamics is key signature of Skyrmion models of nuclei.
- Vibrational excitations of Skyrmions needed to model e.g. Helium-4 resonances, and Calcium-40 spectrum.
- Spin-orbit coupling and beta-decay matrix elements depend on pion field structure – further test of Skyrmion picture.

< E > < E > E - ∽ Q @

EXTRA SLIDES

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Carbon-12 energy levels [Rawlinson], allowing for interpolation between triangular and chain Skyrmions: Experiment, Skyrme model

- Bending mode between triangle and chain Skyrmions is excited in Hoyle state, and needed to model 1⁻ and 2⁻ states of Carbon-12.
- B = 10 Skyrmion is "molecule" with 2-alphas/2-nucleons. Good for Boron-10, but rigid-body quantization misses negative-parity states. Bending mode probably needed to model 1⁻, 2⁻, 3⁻ states?
- Two joined-up B = 10 Skyrmions may model some states of Neon-20.
- Gudnason and Halcrow have website "Database of Skyrmion Vibrations", showing vibrational modes up to B = 8.

(ロ) (同) (三) (三) (三) (○) (○)

B = 20 Skyrmion [Lau, Halcrow]

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Icosahedral B = 208 Skyrmion [Halcrow]

<ロ> <四> <四> <三> <三> <三> <三> <三