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Double-Beta Decay

β− : n → p + e− + ν̄e

β+ : p → n + e+ + νe

▶ May happen, when β-decay is not
allowed / suppressed

▶ Two modes:

▶ Standard two-neutrino ββ decay
(2νββ)

▶ Hypothetical neutrinoless ββ (0νββ)
decay
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Two-Neutrino Double-Beta (2νββ) Decay

A
ZXN → A

Z+2 YN−2 + 2e− + 2ν̄e

▶ Allowed by the Standard Model

▶ Observed in ∼ a dozen nuclei

▶ t2ν1/2 ≳ 1020 years
(age of the Universe: ∼ 1010 years)

▶ Rarest measured nuclear process!
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Neutrinoless Double-Beta (0νββ) Decay

A
ZXN → A

Z+2 YN−2 + 2e−

▶ Requires that the neutrino is its own
antiparticle

▶ Violates the lepton-number
conservation law by two units

▶ 1
t0ν
1/2

∝ |mββ

me
|2, mββ =

∑light
i U2

eimi

→ Neutrino masses!
▶ Has not (yet) been measured!
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Half-life of 0νββ Decay

1

t0ν1/2
= g4AG0ν |M0ν |2

(
mββ

me

)2

▶ Axial-vector coupling (gfreeA ≈ 1.27)

▶ Quenched or not?

▶ Phase-space factor

▶ Numerically solved from Dirac equation

▶ Nuclear matrix element (NME)

▶ Has to be provided from nuclear
theory

▶ Hard to estimate the errors!

M. Agostini et al., arXiv:2202.01787 (2022)
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Nuclear Matrix Elements for ββ Decays

▶ For 0νββ decay

M0ν
L = M0ν

GT −
(
gV
gA

)2

M0ν
F −M0ν

T ,

where (for K = GT,F,T)

M0ν
K =

2R

πg2A

∑

k,ab

(0+f ||OK bHK(rab, Ek)||0+i )

with OGT = τ−a τ−b σaσb, OF = τ−a τ−b ,
and OT = τ−a τ−b ST

ab.

▶ For 2νββ decay

M2ν =
∑

k

(0+f ||τ−σ||1+k )(1+k ||τ−σ||0+i )
(Ek − (Ei + Ef )/2 +me)/me
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Nuclear Many-body Methods

▶ Ab initio methods (IMSRG, NCSM,...)

+ Aim to solve Schrödinger equation (SE) for all
nucleons and forces between them

− VERY complex problem → computational limitations
▶ Nuclear Shell Model (NSM)

▶ Solves the SE in valence space
+ Less complex → wider reach
− Effective Hamiltonian relies on experimental data

▶ Quasiparticle Random-Phase Approximation (QRPA)

▶ Describes nuclei as two-quasiparticle excitations
+ Large model spaces, wide reach
− Missing correlations, adjustable parameters,...

▶ ...
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Current Status of 0νββ-Decay Experiments

1

t0ν1/2
= g4AG0ν |M0ν |2

(
mββ

me

)2

▶ Large-scale experiments:
CUORE(Italy), GERDA(Italy),
CUPID(Italy), MAJORANA(US),
EXO-200(US), KamLAND-Zen(Japan),
...

▶ Currently, most stringent half-life limit
t0ν1/2(

136Xe) ≥ 2.3 × 1026 y
KamLAND-Zen Collaboration, arXiv:2203.02139 (2022)

NH: m1 < m2 < m3

IH: m3 < m1 < m2

J. Engel and J. Menéndez,

Rep. Prog. Phys. 80,046301 (2017)
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Next-Generation Experiments
GOAL
Reaching the inverted-hierarchy region of neutrino masses

M. Agostini et al., Phys. Rev. C 104, L042501 (2021)

We need to get the NMEs under control!
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The Contact Term

[t0ν1/2]
−1 = g4AG0ν |M0ν

L +M0ν
S |2

(
mββ

me

)2

▶ Contact term may enhance the NMEs
by up to 80% in light nuclei
V. Cirigliano et al., PRC 100, 055504 (2019), PRL 120, 202001 (2018)

▶ ...and by 43(7)% in 48Ca
M. Wirth, J. M. Yao and H. Hergert, Phys. Rev. Lett. 127, 242502 (2021)

▶ How about the heavier nuclei?

V. Cirigliano et al., PRC 100, 055504 (2019)
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Contact Term in pnQRPA and NSM

M0ν
S =

2R

πg2A
⟨0+f |

∑

m,n

τ−mτ−n

∫
j0(qr)hS(q

2) q2dq|0+i ⟩

with
hS(q

2) = 2gNN
ν e−q2/(2Λ2) .

▶

▶

▶

Couplings (gNN
ν ) and scales (Λ) of the Gaussian

regulator 1.

gNN
ν (fm2) Λ (MeV)

-0.67 450
-1.01 550
-1.44 465
-0.91 465
-1.44 349
-1.03 349

1V. Cirigliano et al., PRC 100, 055504 (2019)
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Contact Term in pnQRPA and NSM

∫
CL/S(r)dr = M0ν

L/S =

∫
C̃L/S(q)dq

In pnQRPA:
MS/ML ≈ 30 − 80%

In NSM:
MS/ML ≈ 15 − 50%
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Effective Neutrino Masses

▶ Effective neutrino masses combining
the likelihood functions 2 of GERDA
(76Ge), CUORE (130Te), EXO-200
(136Xe) and KamLAND-Zen (136Xe)

▶ Middle bands: M0ν
L

Lower bands: M0ν
L + M0ν

S

Upper bands: M0ν
L − M0ν
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Hadronic Two-Body Currents (2BCs)

▶ The effect of the two-body currents can be
approximated by

{
gA(p

2) → gA(p
2) + δa(p

2),

gP(p
2) → gP(p

2)− 2mN
p2

δPa (p2)

M. Hoferichter, J. Menéndez and A. Schwenk, Phys. Rev. D 102, 074018 (2020)

▶ 2BCs reduce 0νββ-decay NMEs by some
25 − 45%
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Probing 0νββ-Decay by Charge-Exchange
Reactions

▶ Charge-exchange reactions (strong interaction)
can probe the 0νββ decay (weak interaction)

▶ Ground-state-to-ground-state double
charge-exchange reactions would probe
0νββ-decay NMEs

H. Ejiri, LJ, J. Suhonen,
Phys. Rev. C 105, L022501 (2022)
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M 0ν Correlated with MDGT - or Is It?

MDGT = (0+gs,f ||
∑

j,k

[σjτ
−
j × σkτ

−
k ]0||0+gs,i)

▶ Linear correlation between double Gamow-Teller
(DGT) and 0νββ in NSM, EDF
N. Shimizu, J. Menéndez and K. Yako, Phys. Rev. Lett. 120, 142502 (2018),
and IBM-2
F. F. Deppisch et al., Phys. Rev. D 102, 095016 (2020), J. Barea et al., Phys. Rev. C 91,

034304 (2015)

▶ Correlation can also be found in ab initio
frameworks
J. M. Yao et al., Phys. Rev. C 106, 014315 (2022)

▶ See A. Belley’s talk!

▶ But not in QRPA (Why?)

N.
Shimizu, J. Menéndez and K. Yako,

Phys. Rev. Lett. 120, 142502 (2018)

J. M. Yao
et al.,

Phys. Rev. C 106, 014315 (2022)
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Radial Densities of M 0ν and MDGT

M0ν
L =

∫ ∞

0
C0ν(r)dr ,

MDGT =

∫ ∞

0
CDGT(r)dr

▶ MDGT more sensitive to proton-neutron
pairing (gpp) than M0ν

▶ Decreasing gpp makes DGT more
short-ranged (like 0νββ decay)

▶ What if we free the value of gpp?
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M 0ν vs. MDGT in pnQRPA

▶ By varying gT=0
pp we observe a

correlation in QRPA

▶ Correlation different from other models

▶ Maybe not surprising, given the
dispersion of M0ν ’s...

▶ ...and different approaches
(closure/non-closure,...)

▶ Measuring DGT reaction could help
constrain M0ν!
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Probing 0νββ Decay by Gamma Decays

▶ Double magnetic dipole (M1) decay
(electromagnetic interaction) can be
related to 0νββ decay (weak
interaction)

▶ Correlation between these processes
observed in NSM
B. Romeo, J. Menéndez, C. Peña-Garay, Phys. Lett. B 827, 136965

(2022)

▶ Correlation also found in QRPA
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Probing 0νββ Decay by 2νββ Decay

▶ How about 2νββ decay?

▶ 2νββ-decay also correlated with 0νββ-decay!
▶ We can use the existing data to estimate 0νββ-decay NMEs!

LJ, B. Romeo, P. Soriano and J. Menéndez, arXiv:2207.05108
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Probing 0νββ Decay by 2νββ Decay
Two-Body Currents & Contact Term

▶ Correlations survive when adding the
2BCs and the contact term

▶ Effect of 2BCs larger than in previous
studies
J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

J. Engel, F. Šimkovic, P. Vogel, Phys. Rev. C 89, 064308 (2014)

▶ 2BCs and the contact term largely
cancel each other
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Ordinary Muon Capture (OMC) vs. 0νββ

u
p{ud d

u} n
d

µ− νµ

W+

MONUMENT (OMC4DBD)

µ− +A
Z X(Jπi

i ) → νµ + A
Z−1 Y(J

πf

f )

▶ Weak interaction process with momentum transfer q ≈ 100 MeV/c2

▶ Large mµ allows transitions to all Jπ states up to high energies
▶ Both the axial vector coupling gA and the pseudoscalar coupling gP involved

→ Similar to 0νββ decay!
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gA Quenching at High Momentum Exchange?

▶ Recently, first ab initio solution to gA
quenching puzzle was proposed for
β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)

▶ How about gA quenching at high
momentum transfer q ≈ 100 MeV/c?

▶ OMC could provide a hint!

P. Gysbers et al., Nature Phys. 15, 428 (2019)
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Muon-Capture Theory
▶ Interaction Hamiltonian → capture rate:

W (Ji → Jf ) =
2Jf + 1

2Ji + 1

(
1− q

mµ +AM

)
q2

∑

κu

|gVMV + gAMA + gPMP|2

▶ Use realistic bound-muon wave functions
▶ Add the effect of two-body currents
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Valence-Space In-Medium Similarity
Renormalization Group (VS-IMSRG)

▶ Hamiltonian based on the chiral EFT
with EM 1.8/2.0 interaction (in this case)

▶ VS Hamiltonian and OMC operators
decoupled from complimentary
space with a unitary transformation

▶ Operators can be made consistent
with the Hamiltonian!
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Capture Rates on Low-Lying States in 24Na
VS-IMSRG + Two-Body Currents + Realistic Muon Wave Function

Jπ
i Eexp (MeV) Rate (103 1/s)

Exp.3 NSM IMSRG
1bc 1bc+2bc 1bc 1bc+2bc

1+1 0.472 (21.0± 6.6) 4.0 3.0 22.3 15.2
1+2 1.347 17.5± 2.3 32.7 21.3 7.7 4.9

Sum(1+) 38.5± 8.9 36.7 24.5 30.0 20.0
2+1 0.563 17.5± 2.1 1.0 0.7 0.5 0.3
2+2 1.341 3.4± 0.5 3.1 2.5 1.0 0.9

Sum(2+) 20.9± 2.6 4.1 3.2 1.5 1.2

LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992

▶ Generally, IMSRG gives smaller capture rates
▶ 1+ states mixed
▶ Agreement with experiment hopefully gets better with new data from MONUMENT

3P. Gorringe et al., Phys. Rev. C 60, 055501 (1999)
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No-Core Shell Model (NCSM)

▶ Basis expansion method

▶ Harmonic oscillator (HO) basis
truncated with Nmax

→ For more details, see P. Gysbers’ talk!
▶ Hamiltonian based on the chiral EFT

with N4LO EM500 lnl interaction (in this
case)

Figure courtesy of P. Navrátil 31 / 34
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Capture Rates to Low-Lying States in 12B
NCSM + Realistic Muon Wave Functions
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LJ, P. Navrátil, work in progress

Two-body currents?
Transition invariance?
Continuum?
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Summary

▶ Reliable nuclear matrix elements crucial for 0νββ studies
▶ Adding a new short-range term enhances the NMEs notably
▶ On the other hand, adding the effect of two-body currents reduce the NMEs
▶ Related nuclear observables, such charge-exchange reactions, γγ decays and 2νββ

decays, can help constrain the 0νββ-decay NMEs
▶ Ab initio muon capture calculations could shed light on gA quenching at finite

momentum exchange regime

34 / 34
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The Extreme Cases: 100Mo and 48Ca

For 100Mo:
MS/ML = 49 − 108%

For 48Ca:
MS/ML = 23 − 62%
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LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)
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Cancellations at large distances
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Unexpectedly Large MS/ML in 100Mo
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Obtaining Majorana Bound from experiments

Γ0ν = log(2)g4AG0ν |M0ν |2
(
mββ

me

)2

▶ Input: log(likelihood) functions from
experiments

▶ Γ0ν → mββ with our NMEs
▶ 90% CI Bayesian bounds for mββ from

90% CI upper bounds on combined Γ0ν

20

20S. D. Biller, PRD 104, 012002 (2021)
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Jπ Decomposition of M 0ν of 76Ge

NSM 21
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21R. A. Sen’kov, M. Horoi, Phys. Rev. C 90, 051301(R) (2014)
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Technical Note: Spherical pnQRPA
▶ Excitations |Jπ

kM⟩ = ∑
pn(X

Jπ
k

pn A
†
pn(JM)− Y

Jπ
k

pn Ãpn(JM))|QRPA⟩ 9

▶ ...obtained from pnQRPA equation:
(

A B
−B∗ −A∗

)(
Xω

Y ω

)
= Eω

(
Xω

Y ω

)
,

Apn,p′n′(J) =(Ep + En)δpp′δnn′

+ (upunup′un′ + vpvnvp′vn′)× gpp⟨pn; J |V |p′n′; J⟩
+ (upvnup′vn′ + vpunvp′un′)× gph⟨pn−1; J |V ′|p′n′−1; J⟩ ,

Bpn,p′n′(J) =− (upunvp′vn′ + vpvnup′un′)× gpp⟨pn; J |V |p′n′; J⟩
+ (upvnvp′un′ + vpunup′vn′)× gph⟨pn−1; J |V ′|p′n′−1; J⟩

solved from BCS equations
adjustable parameters

9J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (2007)
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+ (upunup′un′ + vpvnvp′vn′)× gpp⟨pn; J |V |p′n′; J⟩
+ (upvnup′vn′ + vpunvp′un′)× gph⟨pn−1; J |V ′|p′n′−1; J⟩ ,

Bpn,p′n′(J) =− (upunvp′vn′ + vpvnup′un′)× gpp⟨pn; J |V |p′n′; J⟩
+ (upvnvp′un′ + vpunup′vn′)× gph⟨pn−1; J |V ′|p′n′−1; J⟩

solved from BCS equations
adjustable parameters

9J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (2007)
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Technical Note: gpp-Problem of pnQRPA

[t2ν1/2]
−1 = g4AG2ν |M2ν |2

log ftEC/β = log10(3κ/(g
2
A|MEC/β|2))

▶ It is hard to simultaneously reproduce
experimental 2νββ, EC and β− data

▶ Often small values of gpp AND
quenched geffA ≪ 1.27 needed

▶ Usually, gpp adjusted to observed 2νββ
decays with gfreeA = 1.27 or geffA = 1.0

[A. Faessler et al., J. Phys. G: Nucl. Part. Phys. 35, 075104
(2008)]
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Partial Isospin Restoration Scheme

gpp⟨pn; J |V |p′n′; J⟩ → gT=0
pp ⟨pn; J, T = 0|V |p′n′; J, T = 0⟩+

+ gT=1
pp ⟨pn; J, T = 1|V |p′n′; J, T = 1⟩

▶ gT=1
pp adjusted to M2ν

F = 0 to restore isospin
▶ gT=0

pp then usually adjusted to M2ν
exp. with gA = 1.27 or geffA = 1.0
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MDGT in pnQRPA

▶ Negative contributions in pnQRPA can
make MDGT small
▶ In NSM, normally no (strong)

cancellation
▶ It is possible to force MDGT = 0 by

adjusting proton-neutron pairing (gpp)
▶ What if we free the value of gpp?

F. Šimkovic, A. Smetana, P. Vogel,

Phys. Rev. C 98,064325 (2018)

MDGT = 1√
3
M2ν

GTcl
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Muon-Capture Experiments

▶ Mostly total capture rates measured

▶ OMC strength spectrum in 100Mo was
first measured at RCNP, Osaka
LJ, J. Suhonen, H. Ejiri, I.H. Hashim, Phys. Lett. B 794, 143 (2019)

▶ Experiments extended to daughter
nuclei of ββ triplets by MONUMENT
(a.k.a. OMC4DBD) collaboration at PSI,
Switzerland

LJ, J. Suhonen, H. Ejiri, I.H. Hashim,
Phys. Lett. B 794, 143 (2019)
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