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The following theorem is established. Among all static, asymptotically flat vacuum space-times with
closed simply connected equipotential surfaces goo=constant, the Schwarzschild solution is the only one
which has a nonsingular infinite-red-shift surface goo=0. Thus there exists no static asymmetric perturbation
of the Schwarzschild manifold due to internal sources (e.g., a quadrupole moment) which will preserve
a regular event horizon. Possible implications of this result for asymmetric gravitational collapse are briefly
discussed.

This proved the uniqueness of the Schwarzschild black hole in vacuum GR.



He was well aware of the significance of his
result. At the end of his paper he considers a
collapsing object and says:

either the body has to divest itself of all quadrupole
and higher moments by some mechanism (perhaps
gravitational radiation), or else an event horizon ceases

to exist.13
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Abstraet. The following theorem is established. Among all static, asymptotically
flat electrovac fields with closed, simply-connected equipotential surfaces g,
= const., the only ones which have regular event horizons g,, = 0 are the Reiss-
ner-Nordstrom family of spherisymmetric solutions with m = G*%le|fc. In the
special case where the gravitational coupling of the electromagnetic energy density
is neglected {G'= 0) all solutions are computed explicitly, thus extending an earlier
result of GivzBURG for a magnetic dipole in ScEWARZSCHILD’S space-time. Possible
implications for gravitational collapse are briefly discussed.



In the 1970’s it was shown that general relativity coupled to simple
(linear) matter fields has no other static black hole solutions.

Wheeler: Black holes have no hair. All black holes are
characterized by M, Q, J.



In the 1970’s it was shown that GR coupled to simple (linear) matter
fields has no other static black hole solutions.

Wheeler: Black holes have no hair. All black holes are
characterized by M, Q, J.

We now know that this is not true.



Examples of black holes with hair

1990’s: GR coupled to nonlinear matter fields can have static matter
outside BHs, e.g., Einstein-Yang-Mills. Can put BHs inside many solitons.

(Bizon, 1990; Volkov and Gal’tsov, 1990; ...)

2000’s: In anti-de Sitter space, charged black holes become unstable to
forming charged scalar hair at low temperatures.

(Gubser, 2008; Hartnoll, Herzog, GH, 2008)

2010’s: Kerr can have massive scalar hair due to superradiant instability.
(Herdeiro and Radu, 2014)



Suppose you put a black hole inside a steel cage, or add
inhomogeneous boundary conditions in anti-de Sitter (AdS).

What happens to the horizon?
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A, not constant
or

S2 not round

on boundary

For nonextremal black holes, the horizon becomes distorted but
remains smooth.



Suppose you put an extremal black hole inside a steel cage, or add
inhomogeneous boundary conditions in anti-de Sitter.

The horizon is now infinitely far away.

/
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GR with A =0: Horizon is

unaffected

A, not constant
or

S2 not round

on boundary

GR with A < 0: Horizon becomes singular!



Main Results
(Kolanowski, Remmen, Santos, and GH, 2022, 2023)

* Nonspherical extremal black holes in AdS have a metric that is C° but
not C? at the horizon. The horizon is singular, and tidal forces diverge
for ingoing timelike or null geodesics.

* Asymptotically flat, extremal Kerr is very sensitive to higher curvature
corrections. Even small higher curvature terms produce singular
horizons on extremal Kerr black holes.



A < 0: Massless scalar field

dr?
Reissner-Nordstrom AdS: ds® = —f(r)dt* + ) + r?dQ)?

2 2M 2
where f(r)=%+1— ; +i22

The horizon r, is the largest zero of f, and at an extremal horizon:
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Consider a static, massless scalar test field, and expand in modes:

These satisfy: (fr¢; ) + 2 e LLH 1)¢£m =0

Near the extremal horizon, try  ®em ~ (r —14)"

1 [\/1 N 4+1) 1} If L =1, we have

Find a solution if T=5 14672 /L2 O<y<1forallr,>0
So T,, diverges



Comments

* If r, is big enough, y < 1 for higher ‘s
* The largerr, , the smallervy, so T,, becomes more divergent.

* The result is derived locally. The only role of asymptotic conditions is
to source nonspherical modes.

* A =0 follows by taking L to infinity. Find y =/ (always integer)

* A > 0 follows by analytically continuing L? to - L%. Find that the field is
C! but not C? (for small r,).



Linearized Einstein-Maxwell

Start with AdS, x S? in ingoing null coordinates:
_— V = const
p=0__|

ds® = —p*dv® + 2dvdp + d?

Since this is highly symmetric, we can expand static perturbations in
terms of modes on both AdS, and S?. First set

0g = p’ (5F p* dv® + 2 pdh, dvdx® + dqy, dz” dxb)

And similarly for Maxwell perturbation. Then expand coefficients in
spherical harmonics.



Get a set of algebraic equations for the coefficients. Solutions exist if
the exponent is

__y+vuaﬂ+n+ﬁai4v%l+%w+1X1+a)

o
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62
where oc=1+ 2
. 0C papp ~ (v — 1)p" ™2
p components of the curvature scale like:
So if L#7<2 ORpp ~ (v —1)p" %,

linearized solutions are singular.
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Einstein’s equation
can’t be defined in
grey region.

All 3 modes lead to
singular horizons.



We will show that nonlinear effects do not remove these
singularities.

Since generic, nonspherical boundary conditions will include
these low / modes:

generic nonspherical extremal black holes in AdS are singular.

(ForA=0,vy,=0+1,y_=/—1, so horizon is nonsingular.
For A >0, vy is larger, but still less than 2 for small Q.)



Nonlinear solutions

We numerically found static, charged black holes in AdS with
boundary metric (conformal to) round S? x R

and  A¢|pgy =2+ .1cosb

We cooled them down and monitored the maximum of Cpcbpcb on the
horizon.



Scaling argument

Consider a near extremal black hole. Near the horizon, the metric is

2

d
ds” = —(o* )i+ Fs +de?

and T = b/2n. Away from the horizon the nonspherical perturbations
should behave like the extremal solution: Cy ~ p(r=2)

This should hold until p ~ T. So we expect C,,, ~ T /=2
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Find max C gy~ ao T 72
with y=.1224

Predicted value from lowest
/=2 mode in linear analysis and

scaling argument: y=.1220

Also, a, =.0017, consistent
with /=2 mode being generated
nonlinearly.



These singularities affect BH thermodynamics

The BH entropy acquires anomalous scaling with T:

The perturbation decays like p¥ but S;, doesn’t change to first order.
The leading correction to Sg,, comes at second order and scales like p?".

Scaling argument relates p to T:  Sgy =S5+ S, T

dS

The specific heat at constant charge scales like Cg = Td_T o T

So if y < % this is larger than the usual linear T behavior.



This provides an easy way to detect

these singularities in a dual field theory!



A=0

In GR, extremal Kerr black holes are not affected by stationary,
axisymmetric perturbations (e.g. sourced by distant matter).

But the low energy effective action probably includes higher curvature
terms:

S:/ d4a:\/—_g(R+nR3+>\R4+---)
M

These come from integrating out massive classical degrees of freedom,
or from quantum loop corrections.



The near horizon extreme Kerr geometry (NHEK) takes the form
(Bardeen, GH, 1999)

2

d
ds® = J A(0) | —p2di® + p—@ +d0% + B(0)(d + pdt)?

We found the leading corrections to this solution coming from the R3
and R* terms (preserving the SO(2,1) x U(1) symmetry).

Then studied what happens when stationary, axisymmetric

perturbations are added. As before, they behave like p? near the
horizon.



Without the R3 or R* corrections, perturbations can be described in

terms of Legendre polynomials, P;(cos 0), and y(O({) =/, starting with
L =2.

With the corrections, we find v =7 + nv® + x+®
with y(6) — a/_]2> 0 and y(8): _ b/.l3< 0

As before, if y < 2, there are curvature singularities.



N gets contributions at one loop from massive particles: (Goon, 2016)

n > 0 for bosons and mn < 0 for fermions

Proportional to 1/m?, so largest for the lightest particle. In our universe,
that is the neutrino, so n < 0 which implies y < 2.

Causality or unitarity both require A > 0, so this also implies y < 2.
(Gruzinov and Kleban, 2006; Remmen et al 2015)

So generic stationary, axisymmetric perturbations produce a singular
extremal Kerr horizon.



The full asymptotically flat Kerr metric includes the / = 2 correction
to the near horizon geometry.

So extreme Kerr develops a singular horizon when R3 or R*
corrections are included.

True even with very small coefficients!



Main Results
(Kolanowski, Remmen, Santos, and GH, 2022, 2023)

* Nonspherical extremal black holes in AdS have a metric that is C° but
not C? at the horizon. The horizon is singular, and tidal forces diverge
for ingoing timelike or null geodesics.

* Asymptotically flat, extremal Kerr is very sensitive to higher curvature
corrections. Even small higher curvature terms produce singular
horizons on extremal Kerr black holes.



