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The following theorem is established. Among all static, asymptotically Rat vacuum space-times with
closed simply connected equipotential surfaces g00=constant, the Schwarzschild solution is the only one
which has a nonsingular infinite-red-shift surface gpp =0. Thus there exists no static asymmetric perturbation
of the Schwarzschild manifold due to internal sources (e.g. , a quadrupole moment) which will preserve
a regular event horizon. Possible implications of this result for asymmetric gravitational collapse are briefly
discussed.

1. INTRODUCTION
HK peculiar properties of the infinite-red-shift
surface g00= 0 (r=2trt) in Schwarzschild's spheri-

cally vacuum field, and the question qf whether analo-
gous surfaces exist in asymmetric space-times' ' have
become a focus of attention in connection with recent
interest in gravitational collapse.
For static fields (to which we confine ourselves in this

paper) the history of an infinite-red-shift surface can
be de6ned as a 3-space S on which the Killing vector
becomes null. Then S itself is null, and acts as a station-
ary unidirectional membrane for causal inQuence. '
In the special case of axial symmetry, the effect on S

of static perturbations of the Schwarzschild metric can
be worked out explicitly. ' "A fundamental diEerence
emerges according to whether the source of the pertur-
bation is external or internal. If the perturbation is due
solely to the presence of exterior bodies, and if it is not
too strong (e.g., if the spherically symmetric particle is
encircled by a ring of mass some distance away), the
effect is merely to distort Swhile preserving its essential
qualitative features as a nonsingular event horizon. ' On
the other hand, superimposing a quadrupole moment q,
no matter how small, causes S to become singular. ' (The
square of the four-dimensional Riemann tensor diverges
according to

RABCDR &I /g00 as g00 ~ 0) ~

A study of small (linearized) static perturbations
of the Schwarzschild manifold4 points to similar
conclusions.
Partial results of this type suggest strongly that

Schwarzschild's solution is uniquely distinguished
among all static, asymptotically Bat, vacuum 6elds by
the fact that it alone possesses a nonsingular event

'A. G. Doroshkevich, Ya. B. Zel'dovich, and I. D. Xovikov,
Zh. Eksperim. i Teor. Fiz. 49, 170 (1965) (English transl. : Soviet
Phys.—JETP 22, 122 (1966)j.'C. V. Vishveshwara, University of Maryland Report, 1966
(unpublished).' L. A. Mysak and G. Szekeres, Can. J. Phys. 44, 617 (1966);
W. Israel and K. A. Khan, Nuovo Cimento 33, 331 (1964).
" T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).
" Q. Krez and N. Rosen, Bull. Res. Council Israel Fs, 47 (1959).
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horizon. It is the aim of this paper to give a precise
formulation (see Sec. 4) and proof of this conjecture.

2. IMBEDDING FORMULAS

Ke begin by collecting some general formulas for the
immersion of hypersurfaces in an (st+1)-dimensional
Riemannian space. '
Let the equations

x =x'(e', ,e",V), V=const (2)
represent an orientable hypersurf ace 2 with unit
normal n;

+1 (spacelike n)
(3)—1 (timelike n)

n e&;&=0, n n=e(n)=

( e e e e expel&—e& &"= -R"-ere&.& (7)
(be ee' be'be ee'ee

lead, with the aid of (5) and (6), to the equations of

Greek indices run from 1 to I+1. Italic indices distinguish
quantities defined on the imbedded manifold (e.g., E~f„g is the
intrinsic curvature tensor of Z) and have the range 1—sz. Covariant
differentiation with respect to the (n+1)-dimensional or n-dimen-
sional metric is denoted bv a stroke or a semicolon, respectively.
1776

The e holonomic base vectors e(;) tangent to Z,
with components

e&;& ——ex /Be' (4)
are such that an infinitesimal displacement in Z has
the form e(;~d8'.
The Gauss-%eingarten relations

be&,&o/M'= —e(n)E, srto+1' 0'e&,&" (5)
decompose the absolute derivative b/bee Lreferred to the
(rt+1)-dimensional metric( of the vector e&,& with
respect to the (st+1)-dimensional basis fe&,&,n). They
may be regarded as defining the extrinsic curvature
tensor E ~ and the intrinsic one connection I', ~' of Z.
From (3) and (5).

erto/be'= E;e&.&o.
The Ricci commutation relations

This proved the uniqueness of the Schwarzschild black hole in vacuum GR.
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sents the two-dimensional I.aplacian, and

tt'ab P(+ab 2 gab+) ~ (47)
These equations are now integrated over Z. We ob-
serve that

(V'f)g't'de'de'= 0

(2)@~i/2ggly02 8&

(4g)

(Gauss-Bonnet theorem), for a simply connected,
closed regular 2-space and any regular function f, and
we employ (40), (42), and (43) to evaluate the surface
integrals. We find

pp&4m,

Sp&XPp'

(49)

(50)
from (45) and (46), respectively, with equality if and
only if

ct.p=0=$ b (51)
everywhere on Z.
Comparison of (44), (49), and (50) shows that

equality must hold. The spherical symmetry of the
field then follows immediately from (51), and establishes
the theorem. To verify that the Schwarzschild solution
(for any rN&0) indeed satisfies conditions (a)—(d) is, of
course, trivial.

S. DISCUSSION

The search for a space-time possessing a regular
event horizon can be regarded as a nonlinear eigenvalue
problem. For the class of static, asymptotically Qat
vacuum 6elds, it has here been formulated as the
problem of selecting well-behaved solutions of the
systein of differential Eqs. (16), (30), and (35), which
have V=O as a singular boundary point. It has been
shown that the eigensolutions are the Schwarzschild
6elds, characterized by a continuous spectrum of non-
negative eigenvalues m. Extensions of this result" would
be of great interest. In particular, it is natural to ask
whether the 2-parameter family of Kerr solutions"
embraces all eigenfields in the stationary case.
"It has been shown recently PW. Israel (to be published)g that

the Reissner-Nordstrom solutions with rrt & ( e ~
comprise all eigen-

6elds in the class of static, asymptotically Qat electrovac space-
times.
's R. P. Kerr, Phys. Rev. Letters 11, 237 (1963); R. H. Boyer

and R. W. Lindquist, J. Math Phys. 8, 265 (1967).

The result of this paper would have important
astrophysical consequences if it were permissible to
consider the limiting external field of a gravitationally
collapsing asymmetric (nonrotating) body as static.
In that case, only two alternatives would be open—
either the body has to divest itself of all quadrupole
and higher moments by some mechanism (perhaps
gravitational radiation), or else an event horizon ceases
to exist. "

ACKNOWLEDGMENTS

I am indebted to V. de la Cruz, C. W. Misner, and
particularly F. A. K. Pirani for stimulating discussions.
This work was carried out during tenure of a Senior
Research Fellowship from the National Research Coun-
cil of Canada.

APPENDIX

In connection vvith the argument of Sec. 4, it will
be shown here that the level surfaces of a regular
harmonic function V (defined on a three-dimensional
Riemannian space) are many-sheeted in the neighbor-
hood of a point I'p, where V has vanishing gradient.
Let V~„... „(rt&2) be the covariant derivative of

lowest order which does not vanish at I'p. In terms of
Riemannian normal coordinates with origin at I'p, we
have

g'I ~.=~' I'-s"
I ~.=0,

„I t .——0, (rl(rt)
ct, ct „UIQ —V[ ...

I
j» —N.c ... +0.

The harmonic condition g ' 'VI, ,... „=0 requires that
c,... „be traceless. Thus the leading term in the power
series expansion

V—Ve=c~...~ x '..x ~+ LVe =—V(Ps)j
in a solid spherical harmonic Y„(x',x', x') of degree tt.
Hence V—Ve vanishes on rt distinct curves of a (suf-
ficiently sinall) geodesic sphere with center Ps, and the
surface V= Vp has more than one sheet.

"ln this connection, it is perhaps signi6cant that one can
construct a sequence of static vacuum fields with axial symmetry,
which are nonsingular to well within the gravitational radius—
they display only a "pointlike" multipole singularity at the origin
of Weyl's coordinates —which are free of event horizons, and which
deviate arbitrarily little from spherical symmetry for r) (1+@2)et.
See W. Israel, Nature 216, 148, 312 (1967).

He was well aware of the significance of his 
result. At the end of his paper he considers a 
collapsing object and says:
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Abstract. The following theorem is established. Among all static, asymptotically 
flat eleetrovae fields with closed, simply-connected equipotential surfaces goo 
= const., the only ones which have regular event horizons g00 = 0 are the t~eiss- 
ner-Nordstr6m family of spherisymmetric solutions with m > Gll~le]/c. In the 
special case where the gravitational coupling of the electromagnetic energy density 
is neglected (G = 0) all solutions are computed explicitly, thus extending an earlier 
result of G~zBv~G for a magnetic dipole in SC]~WAX~ZSCItXLD'S space-time. Possible 
implications for gravitational collapse are briefly discussed. 

1. Introduction 

Of centrM importance  to  the  theory  of gravi ta t ional  collapse is the  
question whether  event  horizons are a fairly normal  characteristic of 
very  intense gravi tat ional  fields, or whether  t hey  are merely quirks of 
the special highly symmetr ic  solutions which have so far been studied. 

I f  we restrict  ourselves to the class of asymptot ical ly  flat, static 
vacuum fields, it is already known [1] t ha t  the only regular event  ho- 
rizons are spherical. More precisely: among all fields in this class with 
closed, s imply-connected equipotentiM surfaces g00 = c o n s t . ,  Schwarz- 
schild's solution is the only one with a regular event  horizon go0 = 0. 
This means t h a t  no static asymmetr ic  per turbat ion  of the Schwarzsehild 
field which originates f rom sources within the critical surface goo = 0 
(r = 2m) can preserve a regular event  horizon. (On the other  hand,  per- 
turbat ions  due to  exterior sources, such as dis tant  masses, leave the  
quali tat ive character  of the event  horizon unaffected [2].) 

Quite generally, in the case of an  a rb i t ra ry  asymptot ica l ly  flat field, 
it therefore seems natura l  to ask whether  the regular i ty of an event  
horizon is destroyed by  any  asymmetr ic  per turbat ion due to  interior 
sources (e.g. mass quadrupole [3], magnet ic  dipole field [4], outgoing 
gravi tat ional  waves ; an exception has to be made here for ro ta t ion  - -  the 
Kerr  manifold has a regular event  horizon [5]). 1 I f  this were true, i t  
would force a drastic reappraisal of our current  ideas on the nature  of 
gravi ta t ional  collapse [6]. 

* On leave of absence from the Mathematics Department, University oi Alberta, 
Edmonton, Canada. 

1 For instance, it might be conjectured that every vacuum field which has a 
regular event horizon and which is asymptoticMly flat (with an outgoing radiation 
condition) is algebraically special. 



In the 1970’s it was shown that general relativity coupled to simple 
(linear) matter fields has no other static black hole solutions.

Wheeler: Black holes have no hair. All black holes are 
characterized by M, Q, J.



In the 1970’s it was shown that GR coupled to simple (linear) matter 
fields has no other static black hole solutions.

Wheeler: Black holes have no hair. All black holes are 
characterized by M, Q, J.

We now know that this is not true.



Examples of black holes with hair

1990’s:  GR coupled to nonlinear matter fields can have static matter 
outside BHs, e.g., Einstein-Yang-Mills. Can put BHs inside many solitons.

     (Bizon, 1990; Volkov and Gal’tsov, 1990; …)

2000’s:  In anti-de Sitter space, charged black holes become unstable to 
forming charged scalar hair at low temperatures.

(Gubser, 2008; Hartnoll, Herzog, GH, 2008)

2010’s: Kerr can have massive scalar hair due to superradiant instability.
(Herdeiro and Radu, 2014)



Suppose you put a black hole inside a steel cage, or add 
inhomogeneous boundary conditions in anti-de Sitter (AdS).
What happens to the horizon?

For nonextremal black holes, the horizon becomes distorted but 
remains smooth.

At not constant
            or
S2 not round 
on boundary



Suppose you put an extremal black hole inside a steel cage, or add 
inhomogeneous boundary conditions in anti-de Sitter.
The horizon is now infinitely far away.

GR with L = 0: Horizon is         GR with L < 0: Horizon becomes singular!
            unaffected

At not constant
            or
S2 not round 
on boundary



Main Results

• Nonspherical extremal black holes in AdS have a metric that is C0 but 
not C2 at the horizon. The horizon is singular, and tidal forces diverge 
for ingoing timelike or null geodesics.

• Asymptotically flat, extremal Kerr is very sensitive to higher curvature 
corrections. Even small higher curvature terms produce singular 
horizons on extremal Kerr black holes.

(Kolanowski, Remmen, Santos, and GH, 2022, 2023)



L < 0: Massless scalar field

Reissner-Nordstrom AdS:

where

The horizon r+  is the largest zero of f, and at an extremal horizon:

start by discussing this simple example in the next section. In Sec. 3, we begin our

main analysis of Einstein-Maxwell solutions, by studying linearized gravitational and

electromagnetic perturbations of the near horizon geometry of extremal black holes.

Sec. 4 contains a discussion of the full nonlinear story, and shows that the singularities

indicated by the linearized analysis indeed arise in the full solutions as T Ñ 0. To

see the anomalous scaling of the specific heat, one needs to go to very low T , which is

di�cult to reach in the Einstein-Maxwell theory. So in Sec. 5 we introduce a simpler

theory in which this e↵ect can be clearly demonstrated. We conclude in Sec. 6 with a

brief discussion.

2 Simple example

Before we get into the technical details, let us consider a very simple toy model which

will illustrate the main ideas. We will consider a massless scalar field on an extremal

Reissner–Nordström-AdS (RN ASdS) black hole. Recall that the RN AdS metric is

ds2 “ ´fprq dt2 ` dr2

fprq ` r2d⌦2 (2.1)

where d⌦2 is the line element on a unit radius round two-sphere,

fprq “ r2

L2
` 1 ´ 2M

r
` Q2

r2
(2.2)

and L is the AdS radius. In the extremal limit, the horizon is at

r` “
d

2Q2

1 `
a
1 ` 12Q2{L2

(2.3)

and

f 2pr`q “ 6

L2
` 2Q2

r4`
(2.4)

We now perturb this spacetime by adding a static, massless scalar field �. Since the

background is spherically symmetric, we may expand � into the spherical harmonics:

� “
ÿ

`,m

�`mY`m. (2.5)

Then, the Klein–Gordon equation reads

pf�1
`m

q1 ` 2f�1
`m

r
´ `p` ` 1q

r2
�`m “ 0 (2.6)

– 4 –
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Consider a static, massless scalar test field, and expand in modes:

These satisfy:

Near the extremal horizon, try

Find a solution if
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Qj
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�`m ⇠ (r � r+)
�

(1) � =
1

2

"s

1 +
4`(`+ 1)

1 + 6 r2+/L
2
� 1

#
,

1

If l =1, we have
 0< g < 1 for all r+ > 0
So Trr diverges
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Comments

• If r+ is big enough, g < 1 for higher l ‘s

• The larger r+ , the smaller g, so Trr becomes more divergent. 

• The result is derived locally. The only role of asymptotic conditions is 
to source nonspherical modes.

• L = 0 follows by taking L to infinity. Find g = l (always integer)

• L > 0 follows by analytically continuing L2 to - L2. Find that the field is 
C1 but not C2 (for small r+).



Linearized Einstein-Maxwell

Start with AdS2 x S2 in ingoing null coordinates:

Since this is highly symmetric, we can expand static perturbations in 
terms of modes on both AdS2 and S2. First set

And similarly for Maxwell perturbation. Then expand coefficients in 
spherical harmonics. 

F “ E dv ^ d⇢ ` ⇢Wa dv ^ dxa ` Za d⇢ ^ dxa ` 1

2
Bab dx

a ^ dxb, (3.2b)

where nothing depends on v (so Bv is the Killing vector generating the horizon). It

is often useful to work with the near horizon geometry of the spacetimes of the form

(3.2). To this end we consider a one-parameter p✏ ° 0q family of di↵eomorphisms

�✏pv, ⇢, xaq “ p✏´1v, ✏⇢, xaq. (3.3)

The limits of pull-backs

lim
✏Ñ0

p�‹
✏
g,�‹

✏
F q “ p̊g, F̊ q (3.4)

exist and provides us with a new smooth solution to the Einstein–Maxwell equations.

Then, (3.2) simplifies significantly

g̊ “ 2 dv

ˆ
d⇢ ` ⇢ha dx

a ´ 1

2
⇢2 Cdv

˙
` qab dx

a dxb (3.5a)

F̊ “ E dv ^ d⇢ ` ⇢Wa dv ^ dxa ` 1

2
Bab dx

a ^ dxb, (3.5b)

where now all the ⇢-dependence is explicit. Notice that g̊ posses a new Killing vector:

⇢B⇢ ´ vBv. Also, (3.1) simplifies significantly for p̊g, F̊ q. This allowed for the classifi-

cation (under the assumption of smoothness and either staticity or axial symmetry) of

geometries of the extremal horizons in four dimensions. The only possible geometries

are either those of Reissner–Nordström-(AdS) or Kerr–Newman–(AdS) (in the static or

the axially symmetric case, respectively). Below we consider how stationary solutions

to (3.1) behave near those horizons.

Since we are interested only in the near horizon behavior, we may write our (generic

yet stationary) fields as

g “ g̊ ` �g, (3.6a)

F “ F̊ ` �F (3.6b)

where p�g, �F q are supposed to vanish on the horizon (and by continuity, are small

nearby). Thus, it seems reasonable to expect that p�g, �F q satisfies linearized Einstein–

Maxwell equations on the background of p̊g, F̊ q. Due to the symmetries, we may de-

compose our perturbations into eigenspaces of ⇢B⇢ ´ vBv. They are thus of the form

�g “ ⇢�
`
�F ⇢2 dv2 ` 2 ⇢ �ha dv dx

a ` �qab dx
a dxb

˘
(3.7a)

�F “ ⇢�
ˆ
�E dv ^ d⇢ ` ⇢ �Wa dv ^ dxa ` ⇢´1�Za d⇢ ^ dxa ` 1

2
�Bab dx

a ^ dxb

˙
.

(3.7b)

– 7 –

V = const
r = 0
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Various arguments suggest that general relativity is a low energy approximation to a

more complete theory. When the e↵ective action is written just in terms of the metric

(and possibly other light fields), it includes higher curvature terms in addition to the usual

Einstein-Hilbert term. This occurs whenever there are new classical high energy degrees

of freedom, such as in string theory, or when quantum loop corrections are included. It is

often assumed that these higher order corrections are negligible in regions of low curvature

and can be neglected. We show that this is not always the case. Extremal Kerr black holes

turn out to be very sensitive to these small corrections.
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Get a set of algebraic equations for the coefficients. Solutions exist if 
the exponent is 

where

r components of the curvature scale like:
So if                  
linearized solutions are singular.
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The scaling symmetry implies

�C⇢a⇢b „ �p� ´ 1q⇢�´2 (3.8a)

�R⇢⇢ „ �p� ´ 1q⇢�´2, (3.8b)

where C↵�µ⌫ is the Weyl tensor. Thus, we see that if 1 ‰ � † 2, then our linearized

solutions are singular. We will show that there are indeed solutions with 0 † � † 1

which strongly suggests that generically the spacetime is singular at the horizon.4

One might hope that our results are just an artifact of the linearized approximation

and the full nonlinear solution would behave di↵erently. However, this is not the case.

Even though the curvature diverges, the metric perturbation is small near the horizon,

so higher order corrections to the metric will be even smaller. One can show that the

same scaling results hold in the full theory, as long as fields fall o↵ like a power law

near the horizon. In Sec. 4, we will verify (numerically) that this is indeed the case for

asymptotically AdS black holes. For the rest of this section, we will determine � using

a linearized analysis.

Notice that since the diverging components always involve a ⇢ index and the inverse

of the metric in (3.5) has g̊⇢⇢ “ ´C⇢2, all curvature invariants will remain finite at the

horizon.

3.2 Reissner–Nordström–AdS

As we mentioned above, the only static near horizon geometry is given by the limit

of the extremal Reissner–Nordström-AdS solution. Since in four dimensions there is a

duality between electric and magnetic fields, we may assume that our black hole has

only an electric charge. The fields simplify significantly and they read:

g̊ “ 2 dv

ˆ
d⇢ ´ 1

2
⇢2 C dv

˙
` qab dx

a dxb (3.9a)

F̊ “ E dv ^ d⇢, (3.9b)

4 If 0 † � † 1, the metric is continuous, but not di↵erentiable at the horizon. Nevertheless, it still
makes sense to ask if the norm of the timelike Killing field has a double zero at the horizon (so extremal
black holes are well-defined) since this function remains C2. Weak solutions of the Einstein–Maxwell
equations can be defined if the curvature is integrable. This requires the Christo↵el symbols to be
square integrable. If � ° 1

2 this is the case, so one can extend the fields inside the horizon as a
weak solution, but the extension is not unique. As we will see, for su�ciently large black holes, that
condition is not satisfied and no extension is possible.
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We will show that nonlinear effects do not remove these 
singularities.

Since generic, nonspherical boundary conditions will include 
these low l  modes:  

generic nonspherical extremal black holes in AdS are singular.

(For L = 0, g+ = l + 1, g- = l - 1, so horizon is nonsingular.
For L > 0, g is larger, but still less than 2 for small Q.)



Nonlinear solutions

We numerically found static, charged black holes in AdS with 
               boundary metric (conformal to) round S2 x R 

                 and

We cooled them down and monitored the maximum of Crfrf on the 
horizon.

2 THE AUTHOR

ds2 = �(⇢2 � b2)dt2 +
d⇢2

⇢2 � b2
+ d⌦2

At(r = 1) = 2 + .1 cos ✓

At|bdy = 2 + .1 cos ✓



Scaling argument

Consider a near extremal black hole. Near the horizon, the metric is

and T = b/2p.  Away from the horizon the nonspherical perturbations 
should behave like the extremal solution: Crfrf ~ r(g – 2)

This should hold until r ~ T. So we expect Crfrf ~ T (g – 2)
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These singularities affect BH thermodynamics

The BH entropy acquires anomalous scaling with T:

The perturbation decays like rg  but SBH doesn’t change to first order. 
The leading correction to SBH comes at second order and scales like r2g.

Scaling argument relates r to T:   SBH = S0 + S2 T2g

The specific heat at constant charge scales like
So if g < ½ this is larger than the usual linear T behavior. 

comes from a second order contribution which scales like ⇢2�. We now use the above

scaling argument to relate ⇢ to the near extremal horizon temperature T to obtain

S « S0 ` S2 T
2� (4.6)

where S0 and S2 are suitable constants. This implies that the specific heat at constant

charge scales like

CQ “ T
dS

dT
9 T 2� (4.7)

We confirm this scaling for Einstein-Maxwell theory using second order perturba-

tion theory about the near horizon geometry of an extreme RN-AdS black hole in the

Appendix. We also show that for � “ 1{2, there is an anomalous T log T scaling of the

specific heat.

We have discussed so far how the perturbations behave near the (nearly extremal)

horizon but we omitted their source. The easiest way to obtain such solutions is to

consider slightly deformed boundary conditions. Indeed, a standard (spherically sym-

metric) black hole spacetimes satisfy

At|BM “ µ0, (4.8)

where µ0 is a constant. By the AdS/CFT dictionary, it corresponds to the chemical

potential for the dual theory. We perturb this boundary condition by writing

At|BM “ µp✓,�q, (4.9)

where µ is still time-independent. We look for static black hole solutions (of fixed

temperature T ) satisfying this condition and we monitor their Weyl tensor at the

horizon.7 Note that in this scheme, the total charge Q is determined by the solution

and not prescribed apriori. Of course, we also need to specify the metric at infinity.

For simplicity we will keep it spherical.

A few words about µp✓,�q are in place. Since it is a function on a sphere, we may

decompose it into spherical harmonics

µp✓,�q “
ÿ

`,m

µ`,mY`mp✓,�q. (4.10)

Although we are interested in the full, non-linear theory, let us quickly present what

would happen in a perturbative scheme. If we treat a deviation from spherical sym-

metry as a small correction, non-spherically symmetric contributions satisfy linearized

7 We will see the anomalous scaling of the specific heat in the next section, in a theory where it is
easier to reach the low temperatures required.
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This provides an easy way to detect

these singularities in a dual field theory!



L = 0

In GR, extremal Kerr black holes are not affected by stationary, 
axisymmetric perturbations (e.g. sourced by distant matter).

But the low energy effective action probably includes higher curvature 
terms:

These come from integrating out massive classical degrees of freedom, 
or from quantum loop corrections.
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The near horizon extreme Kerr geometry (NHEK) takes the form
(Bardeen, GH, 1999)

We found the leading corrections to this solution coming from the R3 
and R4 terms (preserving the SO(2,1) x U(1) symmetry).

Then studied what happens when stationary, axisymmetric 
perturbations are added. As before, they behave like rg near the 
horizon.

BRIEF ARTICLE 3

S =
1

16⇡G

Z

M
d
4
x
p
�g

⇣
R+ ⌘R

3
+ �R

4
+ · · ·

⌘

R
cd

ab R
ef

cd R
ab

ef + �e L
6 C2

+ �̃e L
6 C̃2

!
,

ds
2
= J A(✓)


�⇢

2
dt

2
+

d⇢
2

⇢2
+ d✓

2
+B(✓)(d�+ ⇢ dt)

2

�



Without the R3 or R4 corrections, perturbations can be described in 
terms of Legendre polynomials, Pl (cos q), and g(0)(l) = l , starting with 
l  = 2.

With the corrections, we find

                with          g(6)  = a/J2 > 0    and     g(8) = - b/J3 < 0

As before, if g < 2, there are curvature singularities.   
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h gets contributions at one loop from massive particles: (Goon, 2016)
                              
    h > 0 for bosons and h < 0 for fermions

Proportional to 1/m2, so largest for the lightest particle. In our universe, 
that is the neutrino, so h < 0 which implies g < 2.

Causality or unitarity both require l > 0, so this also implies g < 2.
    (Gruzinov and Kleban, 2006; Remmen et al 2015) 

So generic stationary, axisymmetric perturbations produce a singular 
extremal Kerr horizon.



The full asymptotically flat Kerr metric includes the l = 2 correction 
to the near horizon geometry.

So extreme Kerr develops a singular horizon when R3 or R4 
corrections are included.

True even with very small coefficients! 



Main Results

• Nonspherical extremal black holes in AdS have a metric that is C0 but 
not C2 at the horizon. The horizon is singular, and tidal forces diverge 
for ingoing timelike or null geodesics.

• Asymptotically flat, extremal Kerr is very sensitive to higher curvature 
corrections. Even small higher curvature terms produce singular 
horizons on extremal Kerr black holes.

(Kolanowski, Remmen, Santos, and GH, 2022, 2023)


