

J. Williams¹, G. Hackman¹, K. Starosta², for the TIP and TIGRESS collaborations ¹TRIUMF ²Department of Chemistry, Simon Fraser University

Motivation

The 'island of inversion' centered on ³²Mg is characterized by ground-state configurations with an inverted ordering of sd and pf (intruder) neutron orbitals due to nucleon-nucleon interactions. For nearby species outside of the 'island of inversion', similar configurations occur in levels with high energy and spin via cross-shell excitations.

These intruder configurations were studied in ²⁸Mg using a fusion-evaporation reaction, which preferentially populates higher spin and energy states which are likely to result from cross-shell excitations. An upcoming experiment will study ³²Si in similar fashion.

Experiment

The ¹²C(¹⁸O, 2p)²⁸Mg reaction was used (*E*₁₈₀ = 48 MeV, ~10¹⁰ pps. Charged particles were identified using a CsI(TI) scintillator array. Time coincident y rays were detected using the TIGRESS spectrometer.

Top: TIGRESS segmented HPGe clovers. Middle: CsI ball, 38 detector subset. Left: Target wheel device, beam direction in red.

Study of cross-shell excitations in ²⁸Mg and ³²Si using Doppler shift methods

Doppler Shift Attenuation Method (DSAM)

A method to measure lifetimes of very short lived (< 1 ps) excited states in nuclei.

- Measured Doppler shifts of y-rays emitted from the ²⁸Mg residual nucleus as it slowed in a thick target backing.
- Lineshapes of y-rays were compared to simulations to extract lifetimes of excited states.

Doppler Shift Attenuation Method (DSAM) schematic.

y-y spectroscopy

Data from a thin ¹²C target was used to obtain y-y coincidences (following Doppler correction) and construct a level scheme for ²⁸Mg.

Several transitions and excited states first observed in this data, due to the novel choice of reaction mechanism.

The picosecond state in ²⁸Mg

We identified a long-lived state ($\tau_{mean} > 1 \text{ ps}$) de-populated via a 4665 keV transition, likely resulting from neutron cross-shell excitation.

- Lifetime TBD from plunger data (currently) under analysis at SFU).
- Unusual, but similar to an isomeric state in ³²Si (see right).

Next steps - ³²Si

The nearby nucleus ³²Si will be investigated (beamtime scheduled for December 2022) to obtain improved lifetime measurements and determine the placement of its $I^{\pi} = (5^{-})$ nanosecond isomer.

