

β-decay of ⁶⁸Mn: Probing the N = 40 Island of Inversion

R. Umashankar^{1,2}, B. Olaizola³, V. Vedia², A.B. Garnsworthy², and the S1723 collaboration ¹Department of Physics and Astronomy, University of British Columbia ²TRIUMF ³CERN

Motivation

The relatively large gap separating the *pf* shell One of the more well-known divergences from from the neutron $g_{9/2}$ orbital points towards a the independent-particle shell model strong sub-shell closure at N = 40 which has description of the nucleus is the existence of been supported by observation of a high-lying Islands of Inversion (IoI). These are 2⁺ state and low B(E2) value in ⁶⁸Ni (Z = 28). characterized by the presence of deformed However, systematics of $E(2^+)$ and B(E2) values multi-particle multi-hole (*npnh*) ground states have indicated a sudden increase in instead of the *0p0h* configurations predicted by collectivity below Z = 28 when approaching spherical mean-field calculations at stability. N = 40, seen especially in the rapid drop of Consequently, the features normally observed $E(2^+)$ in Fe (Z = 26) and Cr (Z = 24) isotopes. in regions with a large shell or sub-shell closure disappear.

Figure 1: (Left) The energy of the first 2⁺ state in ⁶⁸Ni is high, a characteristic often seen with shell and sub-shell closures, while other isotopic chains in the area do not show the same behaviour. (*Right*) B(E2; $2_1^+ \rightarrow 0_1^+$) values show the onset of collectivity in Fe and Cr isotopes when approaching the N = 40 IoI.

Figure 2: (*Top*) A schematic of the GRIFFIN γ -ray spectrometer. (Bottom) The various ancillary detectors that complement the HPGe array.

N = 40 Island of Inversion

Experiment

Preliminary Analysis and Goals

- Detailed β-decay spectroscopy with higher statistics compared to previous experiments.
 - ~10⁵ higher statistics than the EURICA campaign at RIKEN.
- Confirmed γ -ray energies from previous studies with new lines being placed in the level scheme.
- Firm assignment of low-lying spins aided by the measurement of $\gamma - \gamma$ angular correlations.
- Re-measure the beta-delayed neutron emission probability and extract the lifetimes of excited states.

The S1723 campaign was carried out at TRIUMF-ISAC using the state-of-the-art GRIFFIN γ -ray spectrometer. It utilized the β and β -n decay of ⁶⁸Mn to populate excited states in ^{67,68}Fe, ^{67,68}Co and ^{67,68}Ni. In addition to HPGe clovers of GRIFFIN, the experiment also used ancillary detectors for fast γ -ray timing and β tagging.

the room background.

Figure 4: (*Top*) γ singles energy spectrum from S1723. (*Middle*) β tagging using ancillary β detectors considerably reduces

(*Bottom*) γ - γ coincidence analysis gating on the 2⁺ \rightarrow 0⁺ transition.