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Introduction

Neutrinoless double beta decay (OvpBp) is
a hypothetical decay with profound
Implication on neutrino physics and
physics beyond the standard model . To
extract relevant information from
experiments, theoretical inputs in the form
of nuclear matrix elements are required.
Previous nuclear models used to calculate
this quantity show a large discrepancy
with no way of assessing their uncertainty,
calling for a more fundamental approach:
ab Initio nuclear theory.

Neutrinoless Double Beta
Decay

Weak process in which two neutrons decay
Into two protons by emitting two electrons.

Violates lepton-number conservation.

The half-life of the decay, T, ',
relates to the effective mass of the
neutrino, mgs via
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where G% is a phase-space factor and M% is
the nuclear matrix element (NME).

The NME is composed of Gamow-Teller
(GT), Fermi (F), Tensor (T) and a newly
discovered contact (CT) parts as
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ADb Initio Nuclear Theory

Ab initio nuclear theory can be summarized in
two steps:

Constructing the nuclear potential with
chiral effective field theory (XEFT)

Expansion of the nuclear Hamiltonian -

that can be systematically improved.

Neglected orders are included via fitting of

low-energy constants (LECSs) to few-body =
observables. ;.
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Figure 1: Hierarchy of diagrams involved in XEFT
Interactions adopted from Machleidt, R. & Entem, D. R.
Phys. Rep. 503, 1-75 (2011).
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The valence-space formulation of the In-

ving Schrodinger's equation:

medium similarity renormalization group
(VS-IMSRG) makes the many-body

problem numerically tractable.
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Figure 2: Decoupling by the VS-IMSRG for two valence
nucleons. Figure adopted from K. Tsukiyama, et al. Phys. Reuv.
C 85, 061304(R) (2012).

current Status

ADb initio methods agree on the NMEs of the lightest double-beta decay candidates, while the experimentally relevant

cases have been computationally inaccessible.

New improvements now allow to compute all isotopes of experimental relevance!
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Figure 3: Convergence of the NMEs.

Figure 4: NMEs obtained from different
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Figure 5: Updated limits on mgg.

methods.
Uncertainty quantification with MM- o ++ e 6 e
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Sensitivity of the NMEs to the LECs Is required to assess their 3 _ e IMSRE
taint = ]l + calculations.
uncertainty. T i M
Performing a sensitivity analysis the conventional way Is too _ +
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Machine learning can be used to generate enough samples. o] L
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Models a complex process using mostly low-fidelity (i.e. faster 5
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