

Nuclear Observables as Probes of Neutrinoless Double-Beta Decay

Lotta Jokiniemi, Jason D. Holt, Petr Navrátil TRIUMF

Introduction

Observing neutrinoless double-beta decay would be the most feasible way to shed light on the matter-antimatter asymmetry of the Universe and the nature of the neutrino. However, in order to interpret the experiments, reliable theory estimates are called for. The estimates can be constrained by related nuclear observables.

Double-Beta Decay

Double-beta ($\beta\beta$) decay is a weak interaction process in which two neutrons inside an atomic nucleus transform into protons and two electrons are emitted. There are two modes of the decay:

Figure 1: $\beta\beta$ decay is possible when β decays are energetically forbidden.

Two-neutrino double-beta $(2\nu\beta\beta)$ decay

observed in ~10 nuclei

$$t_{1/2}^{2\nu} \approx 10^{20} \text{ y}$$

• Neutrinoless double-beta $(0\nu\beta\beta)$ decay

- Requires that neutrino is Majorana particle
- Violates lepton-number conservation

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

Half-Life of $0\nu\beta\beta$ -decay

Assuming $0\nu\beta\beta$ decay is mediated by light-neutrino exchange, the half-life can be written as:

$$\frac{1}{\frac{t_{1/2}^{0\nu}}{t_{1/2}^{0\nu}}} = G_{0\nu}g_{\rm A}^4 |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu}| \frac{m_{\beta\beta}^2}{m_e^2}$$

where

- $G_{0\nu}$: phase-space factor
- g_A : axial-vector coupling constant

Quenched or not?

 $M_{\rm L}^{0\nu}$, $M_{\rm S}^{0\nu}$: long- and short-range nuclear matrix elements (NMEs)

Uncertain theory estimates

 $m_{\beta\beta} = U_{e1}^2 m_1 + U_{e2}^2 m_2 + U_{e3}^2 m_3$: effective neutrino mass

Reliable theory estimates crucial to interpret experiments - how could other nuclear observables help constrain them?

Figure 3: g_A quenching puzzle at low momentum exchange solved from first principles. [Nat Phys. 15, 428 (2019)]

Figure 4: NMEs from different models. [arXiv:2202.01787]

Acknowledgements

This work was supported by Arthur B. McDonald Canadian Astroparticle Physics Research Institute. TRIUMF receives federal funding via a contribution agreement with NSERC.

Pro

How 1 Ph

SUMMARY

Nuclear observables can help test the validity of the nuclear many-body methods and constrain the values of the poorly known $0\nu\beta\beta$ -decay nuclear **Discovery**, matrix elements. Particularly, ordinary muon capture and $2\nu\beta\beta$ decay can accelerated help probe $0\nu\beta\beta$ decay owing to the similarities of the processes.

Probe 1: Two-Neutrino Double-Beta Decay

Analogy between $0\nu\beta\beta$ and $2\nu\beta\beta$ decays: Same initial and final states Different momentum exchange: $q_{0\nu\beta\beta} \approx 100 \text{ MeV}, q_{2\nu\beta\beta} \approx 0 \text{ MeV}$ Different intermediate states (only 1⁺ for $2\nu\beta\beta$, all J^{π} for $0\nu\beta\beta$)

Correlation between 2\nu\beta\beta and 0\nu\beta\beta decays

+ measured $2\nu\beta\beta$ -decay half-lives

 \rightarrow estimates for $0\nu\beta\beta$ -decay NMEs

obe 2: Ordinary Muon Capture (OMC)	10
$(A,Z) + \mu^- \rightarrow (A,Z-1) + \nu_\mu$	(%)
	elative rate(
alogy between $0\nu\beta\beta$ decay and muon capture:	Ľ
Both involve momentum exchange $qpprox$ 100 MeV	С
OMC can excite states with all J^{π} values up to high energy (can probe intermediate states of $0\nu\beta\beta$ decay)	Figure 7: obtained ir
Different initial / final states	12
	10
w to use muon capture as a probe of $0\nu\beta\beta$ decay?	(s) 8
Phenomenological studies on total capture rates	9 (10 ³ /
\rightarrow fix the model parameters	4 Bat
Ab initio studies on partial capture rates	2
$ ightarrow$ solve $g_{ m A}$ quenching at $q pprox$ 100 MeV	0