

Adiabatic transport of polarized ultracold neutrons

Emma Klemets (she/her) Supervisor: Beatrice Franke MSc student at UBC & TRIUMF

Emma Klemets - eklemets@triumf.ca

The TUCAN Collaboration

Feb 17, 2023 - WNPPC

The TUCAN EDM experiment

- Looking for the neutron electric dipole moment (nEDM) at a projected sensitivity of 10⁻²⁷ ecm
- Using polarized ultracold neutrons (UCNs)
- Requires very well understood and controllable magnetic & electric fields

The TUCAN EDM experiment

- Looking for the neutron electric dipole moment (nEDM) at a projected sensitivity of 10⁻²⁷ ecm
- Using polarized ultracold neutrons (UCNs)
- Requires very well understood and controllable magnetic & electric fields

Adiabatic spin transport

We need our neutrons to not depolarize after the superconducting magnet.

Ensure adiabatic transport:

This is true when the adiabatic parameter (k) is large:

This requires:

- No $|\vec{B}| = 0$ field transitions
- Slow \vec{B} field changes in the guide regions

Neutron guiding fields

Control the magnetic field in the neutrons guides tubes, so they satisfy these two requirements.

Spin in a magnetic field

Magnets field requirements

Slow $\frac{dB}{dt}$ No $|\vec{B}| = 0$ $v_n=8\,{
m m/s}$ The distance it takes to perform a $\pi/2$ rotation $k=rac{\gamma_n B\Delta x}{v_n\pi/2}$ - 10³ - 10² - 10¹ k = 30- 10⁰ · K= 2 10 20 80 Arc length (Δx) [cm]

Emma Klemets - eklemets@triumf.ca

Magnets field requirements

The change of B along the neutrons path

No
$$|\vec{B}| = 0$$
 Slow $\frac{d\vec{B}}{dt}$
The distance it takes to pe

 $v_n=8\,\mathrm{m/s}$

rform a $\pi/2$ rotation

Emma Klemets - eklemets@triumf.ca

Completed EDM experiment setup

Test environment setup

Goal: measure transitions of major magnetic components to calculate k

Test environment

Emma Klemets - eklemets@triumf.ca

The TUCAN Collaboration

Feb 17, 2023 - WNPPC

The mini B_0 coil

- Series of square loop coils
- In the region of interest of ~30 cm³ the goal is:
 - \circ ~ 1 μT vertical field, within 10%
 - ~1 nT transverse fields

Coil to model the cyclotron field

Emma Klemets - eklemets@triumf.ca

Feb 17, 2023 - WNPPC

Testing results of Mini B₀ coil

Results for 4 hour data runs:

		Mean	Standard		
		(μT)	devia	tion $(\mu \mathbf{T})$	
	Coil Off				
	$B_{\rm vertical}$	0.1793	0	.0001	
	$B_{\mathrm{transverse}}$	0.2435	0	.0002	
	Coil On				
	$B_{ m vertical}$	1.3802	C	.0003]
	$B_{\mathrm{transverse}}$	0.2492	0	.0002]
					$\mathbf{\lambda}$
	¥				
6 nT increase in				0.02 % stability for vertical	
transverse field				field while coil is on	
\rightarrow goal was ~ 1 nT		\rightarrow much better than 10%			
	geal was				

Conclusions

• Excluded region of magnetic field for fulfilling adiabatic transport requirements

 Design and simulation of magnetic test environment

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

Emma Klemets - eklemets@triumf.ca

The TUCAN Collaboration

Extra slides

k reflects how well the UCN's polarization vectors can follow the B field

Adiabatic: $k \gg 1$

Questions:

- How big is big enough for k?
- How to calculate *k* with useful, measurable parameters?

$$k=rac{\omega_L}{\Omega}=\gamma_nrac{B^2}{rac{dB}{dt}}=rac{\gamma_nB^3}{|ec{B} imesec{B}|}$$

Minimum required k

Magnetically straight sections

Exponential relation between the resulting polarization (P_v) , along the same axis as the initial polarization, and k

Requirement for final polarization of greater than 99.8%

k>2

k > 30

Magnetic turn sections

The final polarization along the new axis after a turn is made in

the lab frame. This leads to a more complicated relation to k

Feb 17, 2023 - WNPPC

Extra Mini B₀ coil photos

Slices of the two transverse field components from the B_0 COMSOL simulation

Allan deviations for overnight data runs

Forward differences for high frequency data runs

-750

-500

-250

250

500

0

Forward Difference of Bz (pT)

Emma Klemets - eklemets@triumf.ca

The TUCAN Collaboration

Feb 17, 2023 - WNPPC