The KDK Experiment

A novel measurement of ⁴⁰K for rare-event searches and geochronology

Lilianna Hariasz

Queen's University, Kingston, ON

February 19, 2023

 $60^{\rm Th}$ Winter Nuclear & Particle Physics Conference (WNPPC 2023) Banff, AB, Canada

The KDK collaboration

The KDK collaboration

- \odot Various searches for dark matter, particularly for ${\bf WIMPs}$
- Direct-detection with NaI (DAMA/LIBRA¹, SABRE², COSINUS³,...): $\mathcal{O}(\text{keV})$ signal
- K in NaI; ${}^{40}K \longrightarrow Ar$ electron captures: irreducible 3 keV background

¹Bernabei et al., Universe 4(11), 116 (2018), ²Antonello et al., Astropart. Phys. 106, 1-9 (2019), ³Angloher et al., Eur. Phys. J. C 82(3), 1-11 (2022)

- Various searches for dark matter, particularly for **WIMPs**
- \odot Direct-detection with **NaI** (DAMA/LIBRA¹, SABRE², COSINUS³,...): $\mathcal{O}(\text{keV})$ signal
- K in NaI; ${}^{40}K \longrightarrow Ar$ electron captures: irreducible 3 keV background

- Various searches for dark matter, particularly for **WIMPs**
- Direct-detection with NaI (DAMA/LIBRA¹, SABRE², COSINUS³,...): $\mathcal{O}(\text{keV})$ signal
- \circ K in NaI; ${}^{40}K \longrightarrow Ar$ electron captures: irreducible 3 keV background

¹Bernabei et al., Universe 4(11), 116 (2018), ²Antonello et al., Astropart. Phys. 106, 1-9 (2019), ³Angloher et al., Eur. Phys. J. C 82(3), 1-11 (2022)

Geochronology

- Various dating techniques, including radioisotopic
- K/Ar and 40 Ar/ 39 Ar techniques use knowledge of 40 K \longrightarrow Ar decays
- Long-lived ${}^{40}\mathbf{K}$ $(t_{1/2} \sim 10^9 \ \mathbf{y})$ used to access timescales as old as the Earth

Geochronology

- Various dating techniques, including radioisotopic
- K/Ar and ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ techniques use knowledge of ${}^{40}\text{K}\longrightarrow$ Ar decays
- Long-lived ${}^{40}{
 m K}$ $(t_{1/2} \sim 10^9 {
 m y})$ used to access timescales as old as the Earth

 $\rm http://pubs.usgs.gov/gip/2008/58/$

Geochronology

- Various dating techniques, including radioisotopic
- K/Ar and ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ techniques use knowledge of ${}^{40}\text{K}\longrightarrow$ Ar decays
- Long-lived ${}^{40}{
 m K}$ $(t_{1/2} \sim 10^9 {
 m y})$ used to access timescales as old as the Earth

- EC⁰: rare *third-forbidden unique* transition
- Assumed $I_{\mathrm{EC}^0} \sim (0 0.8)\%$
- 3FU: effective weak-axial vector coupling constant $\rightarrow 0\nu\beta\beta$ half-life (⁴⁸Ca)

• EC^0 : rare third-forbidden unique transition

- Assumed $I_{\mathrm{EC}^0} \sim (0 0.8)\%$
- 3FU: effective weak-axial vector coupling constant $\rightarrow 0\nu\beta\beta$ half-life (⁴⁸Ca)

- EC^0 : rare third-forbidden unique transition
- Assumed $I_{\rm EC^0} \sim (0-0.8)\%$
- 3FU: effective weak-axial vector coupling constant $\rightarrow 0\nu\beta\beta$ half-life (⁴⁸Ca)

- EC^0 : rare third-forbidden unique transition
- Assumed $I_{\mathrm{EC}^0} \sim (0 0.8)\%$
- 3FU: effective weak-axial vector coupling constant $\rightarrow 0\nu\beta\beta$ half-life (⁴⁸Ca)

3 keV events with no high-energy veto available

Geochronology

Common exclusion^[1a] of EC⁰ branch can shift calculated ages by > 10,000,000 years (order of error)^[1b]

Nuclear theory

No existing 3FU electron capture measurements²: avenue to quantify uncertainties and inform $0\nu\beta\beta$ calculations

KDK obtained first EC^0 measurement of ${}^{40}\mathrm{K}$

3 keV events with no high-energy veto available

Geochronology

Common exclusion^[1a] of EC^0 branch can shift calculated ages by > 10,000,000 years (order of error)^[1b]

Nuclear theory

No existing 3FU electron capture measurements²: avenue to quantify uncertainties and inform $0\nu\beta\beta$ calculations

KDK obtained first EC^0 measurement of $^{40}\mathrm{K}$

3 keV events with no high-energy veto available

Geochronology

Common exclusion^[1a] of EC^0 branch can shift calculated ages by > 10,000,000 years (order of error)^[1b]

Nuclear theory

No existing 3FU electron capture measurements²: a venue to quantify uncertainties and inform $0\nu\beta\beta$ calculations

KDK obtained first EC^0 measurement of ${}^{40}K$

3 keV events with no high-energy veto available

Geochronology

Common exclusion^[1a] of EC^0 branch can shift calculated ages by > 10,000,000 years (order of error)^[1b]

Nuclear theory

No existing 3FU electron capture measurements²: a venue to quantify uncertainties and inform $0\nu\beta\beta$ calculations

KDK obtained first EC^0 measurement of $^{40}\mathrm{K}$

Coincident ($\sim EC^*$) SDD signal + MTAS detection

Anti-coincident ($\sim EC^0$) SDD signal *only*

KDK measures $\rho = I_{\mathbf{EC}^0}/I_{\mathbf{EC}^*}$

Silicon Drift Detector (MPP/HLL Munich); < 1 g

Modular Total Absorption Spectrometer (Oak Ridge National Laboratory); NaI(Tl), $\sim 1,000$ kg

Coincident ($\sim EC^*$)

SDD signal + MTAS detection

Anti-coincident ($\sim EC^0$ SDD signal *only*

KDK measures $\rho = I_{EC^0}/I_{EC^*}$

Silicon Drift Detector (MPP/HLL Munich); < 1 g

Modular Total Absorption Spectrometer (Oak Ridge National Laboratory); NaI(Tl), $\sim 1,000~{\rm kg}$

Coincident ($\sim EC^*$)

SDD signal + MTAS detection

Anti-coincident ($\sim EC^0$) SDD signal *only*

KDK measures $ho = I_{{f EC}^0}/I_{{f EC}^*}$

Silicon Drift Detector (MPP/HLL Munich); < 1 g

Modular Total Absorption Spectrometer (Oak Ridge National Laboratory); NaI(Tl), $\sim 1,000$ kg

Coincident ($\sim EC^*$)

SDD signal + MTAS detection

Anti-coincident ($\sim EC^0$) SDD signal *only*

KDK measures $\rho = I_{EC^0}/I_{EC^*}$

Silicon Drift Detector (MPP/HLL Munich); < 1 g

Modular Total Absorption Spectrometer (Oak Ridge National Laboratory); NaI(Tl), $\sim 1,000$ kg

Schematic

Instrumentation paper available: https://doi.org/10.1016/j.nima.2021.165593

8/17

Blinded $^{40}\mathrm{K}$ SDD data

Blinded analysis:

- Likelihood method, statistical procedure
- Coincidence-categorization physics (e.g. γ-tagging efficiency)

Testing methods: open analysis of ⁶⁵Zn data

Blinded $^{40}\mathrm{K}$ SDD data

Blinded analysis:

- Likelihood method, statistical procedure
- Coincidence-categorization physics (e.g. γ-tagging efficiency)

Testing methods: open analysis of ⁶⁵Zn data

Blinded $^{40}\mathrm{K}$ SDD data

Blinded analysis:

- Likelihood method, statistical procedure
- Coincidence-categorization physics (e.g. γ-tagging efficiency)

Testing methods: open analysis of 65 Zn data

⁶⁵Zn complementary measurement

- Some variability in 1115 keV intensity measurements
- 2 Test SDD fits

65 Zn complementary measurement

2 Test SDD fits

⁶⁵Zn complementary measurement

65 Zn MTAS events; coincidence considerations

⁶⁵Zn MTAS events; coincidence considerations

 40 K Result

$$\rho = I_{\rm EC^0} / I_{\rm EC^*} = \left(0.95 \stackrel{\rm stat}{\pm} 0.22 \stackrel{\rm syst}{\pm} 0.10 \right) \times 10^{-2} \longrightarrow I_{\rm EC^0} = (0.098 \pm 0.025)\%$$

DM direct-detection

- $\bullet\,$ Quantified $3\,{\rm keV}$ background in NaI
- DAMA/LIBRA: tends to loosen constraints on result interpretation

Geochronology

- I_{EC^0} omission \rightarrow K/Ar ages overestimated
- Indirect effect on ${
 m ^{40}Ar}/{
 m ^{39}Ar}$

Nuclear theory

- First 3FU EC measurement
- Significant g_A quenching from g_A^{bare}
- ⁴⁸Ca $0\nu\beta\beta$ half-life suppressed by 7^{+3}_{-2}

DM direct-detection

- $\bullet\,$ Quantified $3\,{\rm keV}$ background in NaI
- DAMA/LIBRA: tends to loosen constraints on result interpretation

Geochronology

- I_{EC^0} omission \rightarrow K/Ar ages overestimated
- \bullet Indirect effect on ${\rm ^{40}Ar}/{\rm ^{39}Ar}$

Nuclear theory

- First 3FU EC measurement
- Significant g_A quenching from g_A^{bare}
- ⁴⁸Ca $0\nu\beta\beta$ half-life suppressed by 7^{+3}_{-2}

From Pradler et al (2013) arXiv:1210.5501

DM direct-detection

- Quantified 3 keV background in NaI
- DAMA/LIBRA: tends to loosen constraints on result interpretation

Geochronology

- $I_{\rm EC^0}$ omission $\rightarrow {\rm K}/{\rm Ar}$ ages overestimated
- Indirect effect on ${
 m ^{40}Ar}/{
 m ^{39}Ar}$

Nuclear theory

- First 3FU EC measurement
- Significant g_A quenching from g_A^{bare}
- ⁴⁸Ca $0\nu\beta\beta$ half-life suppressed by 7^{+3}_{-2}

From Stukel et al (KDK) arXiv:2211.10319

DM direct-detection

- Quantified 3 keV background in NaI
- DAMA/LIBRA: tends to loosen constraints on result interpretation

Geochronology

- I_{EC^0} omission \rightarrow K/Ar ages overestimated
- Indirect effect on ${
 m ^{40}Ar}/{
 m ^{39}Ar}$

Nuclear theory

- First 3FU EC measurement
- Significant g_A quenching from g_A^{bare}
- ⁴⁸Ca $0\nu\beta\beta$ half-life suppressed by 7^{+3}_{-2}

Rare ⁴⁰K decay with implications for fundamental physics and geochronology

M. Stukel,¹ L. Hariasz,¹ P.C.F. Di Stefano,^{1,+} B.C. Rasco,² K.P. Rykaczewski,² N.T. Brewer,^{7,3} D.W. Stracener,² Y. Liu,² Z. Gai,⁴ C. Rouleau,⁴ J. Carter,⁵ J. Kostensalo,⁶ J. Suhonen,⁷ H. Davis,^{8,9} F.D. Lukosi,^{8,9} K.C. Goetz,¹⁰ R.K. Grzywacz,^{2,3,11} M. Mancuso,¹² F. Petricca,¹² A. Fijalkowska,¹³ M. Wolińska-Cichocka,^{2,3,14} J. Ninkovic,¹⁵ P. Lechner,¹⁵ R.B. Ickert,¹⁶ L.E. Morgan,¹⁷ P.R. Renne,^{5,18} and I. Yavin (KDK Collaboration)

(Submitted to PRL; Stukel et al arXiv:2211.10319)

First observation of the ground-state electron-capture of 40 K

(Submitted jointly to PRC; Hariasz et al arXiv:2211.10343)

Precision measurement of ⁶⁵Zn electron-capture decays with the KDK coincidence

setup

(Hariasz et al in prep. for NDS)

N.T. Brewer,^{1,2} J. Carter,³ H. Davis,^{4,5} P.C.F. Di Stefano,⁶ A. Fijałkowska,⁷ Z. Gai,⁸ K.C. Goetz,⁹ R.K. Grzywacz,^{1,2,10} L. Hariasz,⁶ R.B. Ickert,¹¹ J. Kostensalo,¹² P. Lechner,¹³ Y. Liu,¹ E.D. Lukosi,^{4,5} M. Mancuso,¹⁴ L.E. Morgan,¹⁵ J. Ninkovic,¹³ F. Petricca,¹⁴ B.C. Rasco,¹ P.R. Renne,^{3,16} C. Rouleau,⁸ K.P. Rykaczewski,¹ D.W. Stracener,¹ M. Stukel,⁶ J. Suhonen,¹⁷ M. Wolińska-Cichocka,^{1,2,18} and I. Yavin (KDK Collaboration) ¹Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ² Joint Institute for Nuclear Physics and Application, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ³Berkeley Geochronology Center, Berkeley, California 94709, USA ⁴Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA ⁵ Joint Institute for Advanced Materials, University of Tennessee, Knoxville, Tennessee 37996, USA ⁶Department of Physics. Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L 3N6 Canada ⁷Faculty of Physics, University of Warsaw, Warsaw PL-02-093 ⁸ Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁹Nuclear and Extreme Environments Measurement Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ¹⁰Department of Physics and Astronomy. University of Tennessee, Knoxville, Tennessee 37996, USA ¹¹Department of Earth. Atmospheric. and Planetary Sciences. Purdue University, West Lafavette, Illinois 47907, USA ¹²Natural Resources Institute Finland. Joensuu FI-80100, Finland ¹³MPG Semiconductor Laboratory, Munich D-80805, Germany ¹⁴Max-Planck-Institut für Physik. Munich D-80805. Germany ¹⁵U.S. Geological Survey, Geology, Geophysics, and Geochemistry Science Center, Denver, Colorado 80225, USA ¹⁶ Department of Earth and Planetary Science, University of California, Berkeley 94720, USA ¹⁷Department of Physics, University of Jyväskylä, Jyväskylä FI-40014, Finland ¹⁸Heavy Ion Laboratory, University of Warsaw, Warsaw PL-02-093

- Increasingly-biased p⁺ rings
- Planar cathode
- $\bullet\,$ Central n⁺ anode is at potential minimum
- Gate of field-effect transistor (FET) connected to anode

MTAS Insert

- Contains SDD + source
- 2mm width except for endcap
- Endcap is 30cm long, 0.63mm thick to reduce scattering

- 19 NaI(Tl) hexagonal volumes
- $\bullet\,\sim 53~{\rm cm}\,\times\,18~{\rm cm}$
- Inner, Middle Outer: one PMT at each end
- Center: 6 PMTs on each end, hole through center for source
- total mass ~ 1 ton
- ~ 4π sr coverage
- surrounded by lead shielding

MTAS BG

Peaks: $^{40}{\rm K}$ (1460 keV), $^{214}{\rm Bi}$ (1760 keV), $^{208}{\rm Tl}$ (2614 keV), $^{127}{\rm I}$ & $^{23}{\rm Na}$ neutron captures (6800 keV).

$^{65}\mathrm{Zn}$ - 3rd Electron Capture Branch

- Electron capture branch to the 770 keV level
- Intensity per 100 for 770 keV = 0.00269(22)
- Intensity per 100 for 330 keV = 0.00254(18)
- This means decay directly to 770 keV occurs 0.00015(28) % of the time
- The systematic effect of the intermediate 65 Cu energy level on ρ is smaller than the statistical error

Uniqueness, Forbiddenness - I/II

From this link

	Type of Transition	Selection Rules	$L_{e\nu}$	$\Delta \pi$?	ft
	superallowed	$\Delta I=0,\pm1^*$	0	no	$1 \times 10^{3} 1 \times 10^{4}$
	allowed	$\Delta I = 0, \pm 1$	0	no	$2 imes 10^3$ – 10^6
	1 st forbidden	$\Delta I = 0, \pm 1$	1	yes	$10^{6} - 10^{8}$
	unique ^{**} 1 st forbidden	$\Delta I = \pm 2$	1	yes	$10^8 - 10^9$
-	2 nd forbidden	$\Delta I = \pm 1^{***}, \pm 2$	2	no	$2 \times 10^{10} 2 \times 10^{13}$
	unique 2 nd forbidden	$\Delta I = \pm 3$	2	no	10^{12}
	3 rd forbidden	$\Delta I = \pm 2^{***}, \pm 3$	3	yes	10^{18}
	unique 3 rd forbidden	$\Delta I = \pm 4$	3	yes	4×10^{15}
	4 th forbidden	$\Delta I = \pm 3^{***}, \pm 4$	4	no	10^{23}
	unique 4 th forbidden	$\Delta I = \pm 5$	4	no	10^{19}

⁴⁰K
$$\xrightarrow{\text{EC}^0/\beta^+}$$
 ⁴⁰Ar (3FU); ⁴⁰K $\xrightarrow{\beta^-}$ ⁴⁰Ca (3FU); ⁴⁰K $\xrightarrow{\text{EC}^*}$ ⁴⁰Ar (1FU)
⁵⁴Mn $\xrightarrow{\text{EC}^*}$ ⁵⁴Cr (A); ⁵⁴Mn $\xrightarrow{\text{EC}^0/\beta^+}$ ⁵⁴Cr (2FU)
⁶⁵Zn all allowed.

From this link

Nomenclature	Meaning
\vec{L}, L	Total orbital angular momentum of the $e\nu$ pair
\vec{S}, S	Total spin angular momentum of the $e\nu$ pair
Fermi (F) transition	$e\nu$ intrinsic spins anti-align, $S = 0$
Gamow-Teller (GT) transition	$e\nu$ intrinsic spins align, $S = 1$
Superallowed	The nucleon that changed form, did not change shell-model orbital.
Allowed	$L = 0$ transition. $M_{if}^0 \neq 0$. See (15.27).
$n^{\rm th}$ forbidden	The $e\nu$ pair carry off n units of orbital angular momentum
Unique	\vec{L} and \vec{S} are aligned.

"Unique transitions are Gamow-Teller transitions where L and S are aligned."