RIUMF

Precision mass measurements of neutrondeficient strontium **Implications for the rp-process and isospin** symmetry

Zachary Hockenbery McGill University and TRIUMF zhockenbery@triumf.ca

WNPPC Feb 16th-19th, 2023

Type-I X-ray bursts

Type-I X-ray bursts: periodic thermonuclear explosions on the surfaces of accreting neutron stars

- Over 100 X-ray bursters are identified in our galaxy [1]
- Burst produces a light curve that is observable to space-based X-ray telescopes

Reasons to study:

- Study nuclear processes which power the explosion \bullet
- Study chemical composition of neutron star surface [2]
- Source of nucleosynthesis?

Review C 102.4 (2020): 045810.)

^{1.} Jean in 't Zand, https://personal.sron.nl/~jeanz/bursterlist.html

^{2.} Meisel Z et. al. Journal of Physics G: Nuclear and Particle Physics. 2018 Jul 25;45(9):093001.

Type-I X-ray bursts

Rapid proton capture process (rp-process): source of nucleosynthesis for Type-I X-ray bursts

- Chain of proton captures and **B**⁺ decays which climb the neutron-deficient side of the nuclear chart to synthesize increasingly heavier isotopes
- Interplay of charged particle reactions and ß⁺ decay strongly \bullet influence overall mass flow and nuclear ashes produced
- Precise mass values important component for accurate calculation of astrophysical reaction rates involved in rp-process [1]
- Many A=60-100 masses along the rpprocess are **not accurately measured** [2]
- 1. Schatz H. International Journal of Mass Spectrometry. 2013 Sep 1;349:181-6.
- 2. Schatz H, Ong WJ. The Astrophysical Journal. 2017 Aug 1;844(2):139.

Measurement:

- 74,75,76Sr (Z=38)
- Medium mass region near N=Z

Experimentally difficult to access:

- Low cross-section for production
- Excessive in-beam isobaric contamination (alkalis and lanthanides) [1]

1. Gallant A T et. al. Physical Review Letters. 2014 Aug 19;113(8):082501.

Radioisotope production at TRIUMF-ISAC

- TRIUMF Cyclotron: 480 MeV, 50 uA, p⁺ beam
- **ISAC** target station:
 - p+ beam impinged onto niobium target to produce radioisotope soup
 - Selectively ionize strontium using resonant ionization laser
 - Formation into radioactive ion beam (RIB) and transport to TITAN
- measurement performed at TITAN ion trapping facility

TITAN ion trapping facility

- Beam preparation: TITAN RFQ cooler-buncher
 - Converts the continuous RIB from ISAC into bunches
 - Buffer gas cooling of beam for injection into downstream traps
- 3 measurement traps:
 - EBIT (charge state breeding and in-trap decay spectroscopy)
 - MPET (Penning trap mass measurements)
 - MR-ToF MS (multi-reflection time-of-flight mass spectrometer)

Mass Measurements with Multi-Reflection Time-of-Flight Mass Spectrometer (MR-ToF MS)

Mass measurement procedure:

- Ions injected into Mass Analyzer
- Ions drift in a field free region cycled between electrostatic mirrors
- $t \propto \sqrt{m/q}$
- Released onto time-sensitive detector
- Build time-of-flight histogram with distinct peaks showing the beam composition

Strontium mass measurements

emg22 MLE fit

m/z [u] ⁷⁵Sr Yield: 500 counts/hour

emg21 MLE fit

⁷⁴Sr Yield: 4.8 counts/hour

Verification of presence of strontium isotope using resonant ionization lasers

Precision mass measurements of neutrondeficient strontium

Comparison of TITAN values with 2020 Atomic Mass Evaluation (AME):

- Mass Excess:
 - $ME(Z,N) \equiv M(Z,N) (Z+N)m_u$

AME2020 values:

- ⁷⁴Sr: AME extrapolation [1]
- ⁷⁵Sr: indirect via β-decay [2]
- ⁷⁶Sr: direct ToF method [3]
- 1. Wang M et. al. Chinese Physics C. 2021 Mar 1;45(3):030003.
- 2. Huikari J *et. al.* The European Physical Journal A-Hadrons and Nuclei. 2003 Mar;16:359-63.
- 3. Lalleman AS et. al. Hyperfine Interactions. 2001 Jan;132:313-20.

300 ME(TITAN) - ME(AME2020) [keV] 200 -⁷⁴Sr 100 0 -100 \star -200 36

Effects of 74-76Sr on rp-process

Reaction network plot

Effects of 74-76Sr on rp-process

<u>Network calculations for Type-I XRBs [1]</u> performed by Hendrik Schatz:

Effect of ⁷⁴⁻⁷⁶Sr:

- Mass flow which passes ⁷⁶Sr reduced by a factor of ~3
- Uncertainty of A=74 ash production reduced from 16% to 0.7%
- Astrophysical observational differences are small, but as more masses are measured combined effect may be impactful

Isospin symmetry and nuclear structure

Isospin is **useful for examining proton-neutron asymmetry** in nuclei and how it impacts nuclear properties (e.g. mass, level structure)

- Concept of isobaric mass multiplet
- Mass Excess for members in an isobaric mass multiplet, assuming a quadratic form in T_z:

Isobaric Multiplet Mass Equation (IMME): $ME(\alpha, T, T_z) = a + bT_z + cT_z^2$

- Works very well for A≈10-60 [1]
- Above A=60, IMME needs further testing [1] (assumptions of IMME can break)

A=74 mass multiplet for T=1

^{1.} MacCormick M, Audi G. Nuclear Physics A. 2014 May 1;925:61-95.

MacCormick M, Audi G. 2014 [1]:

- Extensive survey of IMME from A=10-60
- Global parameterization of empirical c coefficient data using simple assumption: nucleus is a homogeneously charged sphere

- 1. MacCormick M, Audi G. Nuclear Physics A. 2014 May 1;925:61-95.
- 2. Towner IS, Hardy JC. Physical Review C. 2008 Feb 7;77(2):025501.
- 3. Lam YH, Smirnova NA, Caurier E. Physical Review C. 2013 May 6;87(5):054304.
- 4. Martin MS et. al. Physical Review C. 2021 Jul 30;104(1):014324.

MacCormick M, Audi G. 2014 [1]:

- Extensive survey of IMME from A=10-60
- Global parameterization of empirical c coefficient data using simple assumption: nucleus is a homogeneously charged sphere

We provide a new data point for IMME c coefficient (A=74 triplet (⁷⁴Sr, ⁷⁴Rb, ⁷⁴Rb))

- 1. MacCormick M, Audi G. Nuclear Physics A. 2014 May 1;925:61-95.
- 2. Towner IS, Hardy JC. Physical Review C. 2008 Feb 7;77(2):025501.
- 3. Lam YH, Smirnova NA, Caurier E. Physical Review C. 2013 May 6;87(5):054304.
- 4. Martin MS et. al. Physical Review C. 2021 Jul 30;104(1):014324.

IMME c coefficient $(ME(\alpha, T, T_z) = a + bT_z + cT_z^2)$

MacCormick M, Audi G. 2014 [1]:

- Extensive survey of IMME from A=10-60
- Global parameterization of empirical c coefficient data using simple assumption: nucleus is a homogeneously charged sphere

We provide a new data point for IMME c coefficient (A=74 triplet (⁷⁴Sr, ⁷⁴Rb, ⁷⁴Rb))

IMME coefficients can be compared with theoretical models:

- Study contributions of isospin non-conserving forces [3]
- Tests of CKM Unitarity [2]
- Ab-initio calculations using VS-IMSRG [4] in-progress (Jason Holt and Baishan Hu)
- 1. MacCormick M, Audi G. Nuclear Physics A. 2014 May 1;925:61-95.
- 2. Towner IS, Hardy JC. Physical Review C. 2008 Feb 7;77(2):025501.
- 3. Lam YH, Smirnova NA, Caurier E. Physical Review C. 2013 May 6;87(5):054304.
- 4. Martin MS et. al. Physical Review C. 2021 Jul 30;104(1):014324.

IMME c coefficient $(ME(\alpha, T, T_z) = a + bT_z + cT_z^2)$

Summary

- New precision mass data of ⁷⁴⁻⁷⁶Sr using TITAN's MR-ToF MS
- Simulations of rp-process constrain burst ashes and mass flow
- New IMME data for studying isospin symmetry breaking and nuclear structure

Thank you Merci

Natural Sciences and Engineering Research Council of Canada

Conseil de recherches en sciences naturelles et en génie du Canada

TITAN Collaboration

Strain McGill

kvi - center for advanced radiation technology

Ab-initio comparisons to c coefficient

Martin MS et. al. Physical Review C. 2021 Jul 30;104(1):014324.

Isobaric mass multiplets

Different masses and electric charges of *u* and *d* quarks give **three distinct isospin-breaking effects**:

- 1. Coulomb interaction between protons
- 2. Mass difference
 between
 protons and
 neutrons
- 3. Chargedependence of strong interaction

Y. H. Lam, B. Blank, N. A. Smirnova, et al. The isobaric multiplet mass equation for A ≤ 71 revisited. *Atomic Data and Nuclear Data Tables*, 99(6):680 – 703, 2013. ISSN 0092-640X. doi: https://doi.org/ 10.1016/j.adt.2012.11.002

IMME above A=60

- Beyond A=60, large collection of protons in nucleus invalidates charge-independence
- In general, when IMME disagrees with experimental values, there is greater evidence for isospin-mixing (fragmentation of isospin over 2 or more nuclear states)
 - Because IMME supposes a nuclear state is assigned a single isospin (no fragmentation)
- Fragmentation readily observed over A=40 due to increasing density of levels (also observed at very low mass)

20

Mass-Selective Re-Trapping

Re-trapping Mode:

- 1. Ions injected for an initial mass separating cycle (selfcleaning)
- 2. Extraction back into RF injection trap
- 3. Selective trapping of ion of interest
- Injection back into Mass 4. Analyzer for ToF analysis

Mass Analyzer

Mass-Selective Re-Trapping

4 orders of magnitude background suppression:

Sequential 2p capture on Waiting Points

Se

- Waiting point nuclei: a local equilibrium between neighboring isotones force mass flow onto a long lived ^{G+} branch.
 - Strong consequence on reaction flow and burst ashes
- ⁷²Kr (t_{1/2}=17s): a well-known waiting point nucleus
 - ⁷²Kr(p,γ)⁷³Rb unfavored because ⁷³Rb is proton-unbound
 - Bypass with sequential 2p capture (⁷²Kr(p,γ)⁷³Rb(p,γ)⁷⁴Sr)?
 - Sequential 2p capture on ³⁸Ca is an important waiting point bypass¹

1. Görres J, Wiescher M, Thielemann FK. Bridging the waiting points: The role of two-proton capture reactions in the rp process. Physical Review C. 1995 Jan 1;51(1):392.

⁹⁰ Ru
⁸⁹ Tc
⁸⁸ Mo
⁸⁷ Nb
⁸⁶ Zr
⁸⁵ Y
⁸⁴ Sr
⁸³ Rb
⁸² Kr
⁸¹ Br
⁸⁰ Se