Detection of Supernova Neutrinos in the SNO+ Detector

Jasmine Corning

for the SNO+ Collaboration Queen's University

60th Winter Nuclear & Particle Physics Conference February 18th, 2023

Detector

Figure: Artist rendering of the SNO+ detector

Sudbury Neutrino Observatory +

- 2km underground in SNOLAB facility
- inner acrylic vessel with 12 m diameter, viewed by 9362 photomultiplier tubes (PMTs) mounted onto a PMT support structure (PSUP)
- external volume of 7000 tonnes of ultra-pure water (UPW) shielding the AV from the PSUP and cavity

└_ sno+

Phases

Water Phase

905 tonnes of UPW May 2017 — July 2019 Results include ⁸B solar neutrino flux, neutron detection, calibration

Scintillator Phase

780 tonnes of linear alkylbenzene (LAB) Doped with fluor 2,5-diphenyloxazole (PPO) at a concentration of 2.2 g/L Began in April 2022, in progress

Te Loading Phase

Loading the LAB with ¹³⁰Te Development in progress Measuring lifetime of $2\nu\beta\beta$ decay and the search for $0\nu\beta\beta$

Physics Goals

- **1** The search for neutrinoless double beta decay, $0\nu\beta\beta$;
- 2 Geoneutrino emissions;
- Oscillation of reactor anti-neutrinos;
- 4 Low energy solar neutrino flux and spectral shape;
- Sensitivity to supernova neutrinos;
- ... and many more exotic physics topics.

[Albanese et al., 2021]

– Supernova Neutrinos

Core-Collapse Supernovae

Onion-shell structure of pre-collapse star

Figure: [Janka et al., 2012]

- The stellar core mass passes the Chandrasekhar limit, $\approx 1.4 M_{\odot}$ [Woosley et al., 2002]
- Exceeding this, the radiation and degeneracy pressure are no longer sufficient to balance the gravitational force
- $E \approx 10^{53}$ erg is released; most of it in the form of neutrinos

Neutrino Emission

Figure: Neutrino luminosity and energy for an $18M_{\odot}$ progenitor star.

- A *neutrino-sphere* is created when ν diffusion time > time of free fall collapse
- As the outward shock-wave crosses the neutrino-sphere there is a burst of ν_e

Bounce

When the core reaches nuclear density, and neutron degeneracy pressure suddenly stalls the collapse, resulting in an outward propagating shock-wave.

Neutrino Emission

Figure: Neutrino luminosity and energy for an $18M_{\odot}$ progenitor star.

- Neutrinos of all flavours continue to be produced through accretion and cooling phases
- The emission occurs over $\mathcal{O}(10s)$, and has the strongest overall signal in the ν_e luminosity
- Energy range \approx 10-20 MeV

•
$$E_{\nu_{\mu/\tau}} > E_{\bar{\nu_e}} > E_{\nu_e}$$

What Can be Learned

Supernova Physics

- Neutrino absorption via inverse beta decays contributes energy believed to 'revive' the shock-wave, which stalls at the accretion phase [Bethe and Wilson, 1985]
- Sites for nucleosynthesis and the rapid neutron capture responsible for heavy element production [Arcones and Thielemann, 2012]

Neutrino Physics

• More detailed knowledge on neutrino oscillations through dense matter and neutrino self interactions and their collective effects on the flux spectra [Duan et al., 2006]

Detection Channels

Past Detection

The only previous confirmed detection of supernova neutrinos came with SN1987A, which generated 24 total events observed in three different detectors.¹

Figure: Inverse beta decay (IBD, top left), neutral current neutrino-lepton scattering (top middle), and charged current neutrino-electron scattering (top right and bottom).

¹[Hirata et al., 1987], [Bionta et al., 1987], and [Alexeyev et al., 1988]

Simulated Scintillator Signal

Interaction Channel	# of Events
$\nu_x + p \rightarrow \nu_x + p$ $\overline{\nu_x} + p \rightarrow p + e^+$	429.1±12.0 194 7+1 0
	70,07
$ \overline{\nu_e} + {}^{12} \text{C} \rightarrow {}^{12} \text{B} + e^{-1} $ $ \overline{\nu_e} + {}^{12} \text{C} \rightarrow {}^{12} \text{N} + e^{-1} $	7.0±0.7 2.7±0.3
$\nu_x + {}^{12}\text{C} \rightarrow {}^{12}\text{C}^*(15.1\text{MeV}) + \nu'_x$ $\nu_x + {}^{12}\text{C} \rightarrow {}^{11}\text{C} \text{ or } {}^{11}\text{B} + X$	43.8±8.7 2 4+0.5
	12.1
$\nu_{e}/\nu_{e} + e \rightarrow \nu_{e}/\nu_{e} + e$	13.1

Table: Predicted event rates for 780 tonnes of LAB+PPO (no flavour changing mechanisms included). Adapted from [Andringa et al., 2015].

Model

Detection potential is based upon a supernova at d = 10 kpc from Earth which releases 3×10^{53} erg of binding energy evenly among all six neutrino flavours and types. Mean energies are $\langle E_{\nu_{R}} \rangle = 12$ MeV, $\langle E_{\bar{\nu}_{R}} \rangle = 15$, and $\langle E_{\nu_{\chi}} \rangle = 18$ MeV. [Andringa et al., 2015]

Internal Volume

Simulated Scintillator Signal

$$\nu_x + p \rightarrow \nu_x + p$$

 $\langle \textit{E}_{\nu_x}
angle = 17.8^{+3.5}_{-3.0} (\text{stat.})^{+0.2}_{-0.8} (\text{syst.}) \, \text{MeV}$

 $\langle \varepsilon_{\nu_{\chi}} \rangle =$ (102.5^{+82.3}_{-42.2}(stat.)^{+16.2}_{-13.0}(syst.))×10⁵¹ erg

[Andringa et al., 2015]

Figure: Time integrated neutrino-proton scattering energy distribution in the first second of a supernova.

— Internal Volume

SuperNova Early Warning System

- Increases the sensitivity to faint or distant supernovae and the alert confidence; coincident signals may allow for triangulation to the direction of the source
- *SNEWS 2.0*: lower thresholds, integrated multi-messenger approach, pre-core-collapse alert (full details in [Al Kharusi et al., 2021])

Figure: Multi-messenger signals before and after collapse of a 17 M_{\odot} progenitor star. [Al Kharusi et al., 2021]

- External Volume

Simulated Water Signal

Figure: Cross sections for potential supernova neutrino interaction channels. [Scholberg, 2011]

- Volume of UPW between the PSUP and the AV acts as an additional water Cherenkov detector (2.12 kT)
- Sensitive to inverse beta decay (IBD) and elastic scattering off of electrons

$$ar{
u}_{e} + oldsymbol{p}
ightarrow oldsymbol{e}^{+} + oldsymbol{n}$$
 $u_{e,x} + oldsymbol{e}^{-}
ightarrow
u_{e,x} + oldsymbol{e}^{-}$

 Scattered electrons are sensitive to the incoming neutrino direction, and could potentially be used for obtaining directional information that is difficult in scintillator

External Volume

Simulated Water Signal

Truth (MC) event counts for the external volume (EV) of SNO+ for the first second of a supernova at d = 10 kpc from Earth. Only elastic electron scattering (left) and IBD (right) events were simulated in this case (IBD events were only generated from $\bar{\nu}_{e}$ interactions).

External Volume

Water Pointing

 $\begin{aligned} \cos(\theta_{SN}) &= \frac{\hat{x}_{R} \cdot \hat{x}_{SN}}{|\hat{x}_{R}||\hat{x}_{SN}|} \\ \hat{x}_{SN} &= (+1.0, 0.0, 0.0) \\ \hat{x}_{R} : \text{Reconstructed direction} \end{aligned}$

- Total of 60 supernova simulations at d = 10 kpc for a 2 s time window
- Includes only the electron elastic scattering events (induced by all flavours)

Figure: Angular distribution of the reconstructed events in the SNO+ EV.

— External Volume

Water Pointing

Forward peaking events have reconstructed directions aligned with the supernova origin direction, pointing away from the source.

Figure: Angular distribution of the reconstructed events in the SNO+ EV.

Water Pointing

Backward peaking events have reconstructed directions pointing towards the supernova origin direction.

Figure: Angular distribution of the reconstructed events in the SNO+ EV.

This population of events is unexpected (and not observed in the solar pointing in SNO+ water phase) and still under investigation.

Conclusion

Now in full scintillator phase, SNO+ has the capability to be sensitive to supernova neutrinos through multiple channels.

Neutral current neutrino-proton scattering could measure the flux of ν_x .

The external volume of water has the potential to act as a secondary Cherenkov detector to quickly estimate the direction of an incoming supernova event.

References

V. Albanese et al. (The SNO+ Collaboration) (2021) The SNO+ Experiment Journal of Instrumentation, 16, P08059.

S.E. Woosley, A. Heger, and T.A. Weaver (2002) The evolution and explosion of massive stars *Reviews of Modern Physics*, 74.

H. Janka et al. (2012) Core-collapse supernovae: Reflections and directions Progress of Theoretical and Experimental Physics, 2012(1).

H. Duan, G.M. Fuller, and Y.Z. Qian (2006) Collective neutrino flavor transformation in supernovae *Physics Review D*, 74, 123004.

H. A. Bethe and J. R. Wilson (1985) Revival of a stalled supernova shock by neutrino heating *The Astrophysical Journal*, 295, 14–23.

A. Arcones and F.K. Thielemann (2012) Neutrino-driven wind and nucleosynthesis of heavy elements Journal of Physics G: Nuclear and Particle Physics, 40, 013201.

K. Hirata et al. (1987) Observation of a neutrino burst from the supernova 1987A *Physical Review Letters*, 58, 1490.

R.M. Bionta et al. (1987) Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud *Physical Review Letters*, 58, 1494.

E.N. Alexeyev et al. (1988)

Detection of the neutrino signal from SN1987A in the LMC using the INR Baksan underground scintillation telescope *Physics Letters B*, 205(2–3), 209–214.

S. Andringa et al. (2015) Current Status and Future Prospects of the SNO+ Experiment Advances in High Energy Physics, 2016.

S. Al Kharusi et al. (2021) SNEWS 2.0: a next generation supernova early warning system for multi-messenger astronomy New Journal of Physics, 23, 031201.

K. Scholberg (2011) Supernova Neutrino Detection in Water Cherenkov Detectors Journal of Physics: Conference Series, 309, 012028.

J.J. Gómez-Cadenas, J. Martín-Albo, M. Mezzetto, F. Monrabal, and M. Sorel (2011) The search for neutrinoless double beta decay La Rivista del Nuovo Cimento. arXiv:1109.5515.

B. Aharmim et al. (SNO Collaboration) (2009) Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory *Physical Review D*, 80, 012001.

S. Horiuchi and J.P. Kneller (2018) What can be learned from a future supernova neutrino detection? Journal of Physics (5: Nuclear and Particle Physics, 45, 043002.

A. Pietro et al. (2004) SNEWS: the SuperNova Early Warning System New Journal of Physics, 6, 114.

Questions? Comments?

Muon Flux

The muon rate for SNOLab is measured at 0.286 \pm 0.009 $\mu/m^2/day$ for 6010 m.w.e. of shielding. [Aharmim et al., 2009]

Figure: [Gómez-Cadenas et al., 2011]

¹³⁰Te

¹³⁰Te has the highest natural abundance of all favoured 0νββ candidates, as well as a long 2νββ decay half-life. It's Q-value falls below the two highest backgrounds, necessitating stringent radio purity.

Figure: Q-value vs. abundance of isotopes capable of $2\nu\beta\beta$ decay. [Albanese et al., 2021]

Support Slides

Chandrasekhar Limit

$$M_{Ch} = 5.83 Y_e^2$$
 (1)

where Y_e is the number density of electrons relative to the total nucleon number density,

$$Y_e = \frac{n_e}{\rho N_A}.$$
 (2)

For $Y_e = 0.50$, $M_{Ch} = 1.457 M_{\odot}$. As the number of electrons is depleted in the core, the Chandrasekhar mass limit decreases accordingly. [Woosley et al., 2002]

Neutrino Generation

- **() Electron Capture:** $e^- + p \rightarrow n + \nu_e$; emitted neutrino has a characteristic energy, and a recoil is caused in the daughter atom with characteristic momentum. Daughter atom will de-excited into the ground state by a gamma ray or internal conversion.
- **2** Beta Minus Decay: $n \rightarrow p + e^- + \bar{\nu}_e$; radioactive decay of a neutron which emits a beta particle and an electron anti-neutrino.
- **3** Weak Process Pair Annihilation: $e^+ + e^- \rightarrow \nu + \bar{\nu}$; occurs in the high density region of neutrinos trapped by the in-fall of matter in the accretion phase, where thermal photons create the electron-positron pairs.

Support Slides

Neutrino Emission Epochs

Epoch	Duration	Dominant Emission
Pre-supernova	days	$\bar{\nu_e}$
Collapse	< 50 ms	ν_e
Accretion	\simeq 100 ms (ONeMg core)	$ u_{\rm X} < \bar{ u_{\rm e}} < u_{\rm e}$
	\simeq 200-700 ms (Fe core)	$ u_{\rm X} < \bar{ u_{\rm e}} < u_{\rm e}$
Cooling	\simeq 10 s	all flavours

Table: Summary of neutrino emission during different supernova phases. Table adapted from [Horiuchi and Kneller, 2018].

SNEWS Detector Types

Туре	Material	Capability			Flavour
		Energy	Timing	Pointing	
Scintillator	C,H	true	true	false	$\bar{\nu_e}$
Water Cherenkov	H ₂ O	true	true	true	nū _e
Heavy Water (NC)	D_2O	false	true	false	ν_e
Heavy Water (CC)	D_2O	true	true	true	$\nu_e, \bar{\nu_e}$
Liquid Argon	Ar	true	true	true	ν_e
High Z/Neutron	Pb, Fe	true	true	false	all
Radio-Chemical	³⁷ Cl, ¹²⁷ l, ⁷¹ Ga	false	false	false	ν_{e}

Table: Types of supernova neutrino detectors and their capabilities. Table adapted from [Pietro et al., 2004].