Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals

Searching for a Strongly Interacting Dark Sector at MoEDAL MAPP

Shafakat Arifeen

University of Regina

February 17, 2023

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals

Schedule

1 Introduction

- 2 Pion-Like Dark Matter
- 3 The Madgraph Model
- 4 Key Processes and Results

5 Future Goals

Introduction ••••••	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals

Introduction

Introduction
000000

ion-Like Dark Matter

The Madgraph Model

Key Processes and Results

Future Goals

Quick Review of Dark Matter

Dark Matter must follow two key properties:

- Dark Matter must be stable over the lifetime of the universe
- Dark Matter must also be overall electrically neutral and effectively neutral with the Standard Model

Introduction	
000000	

Strongly Interacting Dark is motivated from the following properties:

Self-Interactions

Strongly Interacting Dark is motivated from the following properties:

- Self-Interactions
- Naturalness and Suppressed Interactions

Strongly Interacting Dark is motivated from the following properties:

- Self-Interactions
- Naturalness and Suppressed Interactions
- New Observables

Strongly Interacting Dark is motivated from the following properties:

- Self-Interactions
- Naturalness and Suppressed Interactions
- New Observables

A small minicharged DM subcomponent (0.4%) may resolve the anomalous 21cm hydrogen absorption signal reported by the EDGES Collaboration

G. D. Kribs and E. T. Neil, Int. J. Mod. Phys. A 31 (2016) no.22, 1643004 [arXiv:1604.04627 [hep-ph]]. Berling, Hopper, Krnjaic, McDermott, Phys. Rev. Lett. 121, 011102 (2018)

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goa

MoEDAL Experiment

MoEDAL stands for Monopoles and Exotics Detector At the LHC

International Journal of Modern Physics A, September 2014, Vol. 29, No. 23

troduction F	Pion-Like Dark Matter 00000	The Madgraph Model	Key Processes and Results	Future Goals

MoEDAL-MAPP

MAPP stands for MoEDAL Apparatus for Penetrating Particles

MAPPing the Dark Sector

Introduction	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals

Strongly Interacting Dark Matter have various types:

Pion-like DM: $m_q << \Lambda_D$

Introduction 000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals

- Pion-like DM: $m_q << \Lambda_D$
- Quarkonia-like DM: $m_q >> \Lambda_D$

- Pion-like DM: $m_q << \Lambda_D$
- **Quarkonia-like DM:** $m_q >> \Lambda_D$
- Intermediate regime $(m_q \sim \Lambda_D)$ or Mixed regime $(m_{q1} < \Lambda_D < m_{q2})$

- Pion-like DM: $m_q << \Lambda_D$
- **Quarkonia-like DM:** $m_q >> \Lambda_D$
- Intermediate regime $(m_q \sim \Lambda_D)$ or Mixed regime $(m_{q1} < \Lambda_D < m_{q2})$
- Baryon-like DM

- Pion-like DM: $m_q << \Lambda_D$
- **Quarkonia-like DM:** $m_q >> \Lambda_D$
- Intermediate regime $(m_q \sim \Lambda_D)$ or Mixed regime $(m_{q1} < \Lambda_D < m_{q2})$
- Baryon-like DM
- Dark Glueballs

Strongly Interacting Dark Matter have various types:

- Pion-like DM: $m_q << \Lambda_D$
- **Quarkonia-like DM:** $m_q >> \Lambda_D$
- Intermediate regime $(m_q \sim \Lambda_D)$ or Mixed regime $(m_{q1} < \Lambda_D < m_{q2})$
- Baryon-like DM
- Dark Glueballs
- Many more...

Our research focuses on Pion-like Dark Matter.

Introduction	Pion-Like Dark Matter ●0000	The Madgraph Model	Key Processes and Results	Future Goals

Pion-Like Dark Matter

Meson Dark Matter: Pion-Like

A Lagrangian for a Pion-Like DM is:

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr}[(D_{\mu}U)^{\dagger}D^{\mu}U] + \frac{Bf_{\pi}^2}{2} \operatorname{Tr}(M^{\dagger}U + U^{\dagger}M) + \mathcal{L}_{G'} + \mathcal{L}_{WZW} + \mathcal{L}_{mix} + \dots$$
(1)

S. Scherer, Introduction to chiral perturbation theory, Adv. Nucl. Phys. 27 (2003) 277 [hep-ph/0210398].

The Madgraph Model

Key Processes and Result

Meson Dark Matter: Pion-Like

Where, in the three light quark case, the meson fields are given by:

$$U = e^{i\frac{\Pi}{f}\pi}, \Pi = \pi^a \lambda^a$$
⁽²⁾

And

$$\frac{\Pi}{\sqrt{2}} = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\pi_8 & \pi_+ & K_+ \\ -\pi_- & \frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\pi_8 & K_0 \\ K_- & \bar{K}_0 & -\sqrt{\frac{2}{3}}\pi_8 \end{pmatrix}$$
(3)

And M is the mass matrix

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals
Kinetic M	lixing			

Add a **new massless** U'(1) gauge field (A'_{μ} , dark photon), such that

$$\mathcal{L}_{mix} = -\frac{\kappa}{2} A'_{\mu\nu} B^{\mu\nu} \tag{4}$$

where $A'_{\mu\nu} = \partial_{\mu}A'_{\nu} - \partial_{\nu}A'_{\mu}$ Since we introduced this new field, it will also have a gauge kinetic term:

$$\mathcal{L}_{G'} = -\frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} \tag{5}$$

Removing the mixing term via the field redefinition $A'_{\mu} = A'_{\mu} + \kappa B_{\mu}$ This would modify the covariant derivative, for example if we have a charged dark fermion, its covariant derivative will change according to:

$$(\partial - ie'A'_{\mu}) \to (\partial - ie'A'_{\mu} - ie'\kappa B_{\mu})$$
(6)

Introduction 0000000	Pion-Like Dark Matter 0000●	The Madgraph Model	Key Processes and Results	Future Goals
WZW La	grangian			

The Wess-Zumino-Witten Lagrangian is:

$$\mathcal{L}_{WZW} = \frac{2N_C}{15\pi^2 f_{\pi}^5} \epsilon^{\mu\nu\rho\sigma} \mathcal{T}_{\Gamma} [\Pi \partial_{\mu} \Pi \partial_{\nu} \Pi \partial_{\rho} \Pi \partial_{\sigma} \Pi]$$
(7)

The Wess-Zumino-Witten term allows for $3\to 2$ annihilation process, which results in DM self-interactions and helps explaining the galactic structure anomaly and DM abundance.

Introduction 0000000	Pion-Like Dark Matter 0000●	The Madgraph Model	Key Processes and Results	Future Goals
WZW La	grangian			

The Wess-Zumino-Witten Lagrangian is:

$$\mathcal{L}_{WZW} = \frac{2N_{C}}{15\pi^{2} f_{\pi}^{5}} \epsilon^{\mu\nu\rho\sigma} Tr[\Pi \partial_{\mu} \Pi \partial_{\nu} \Pi \partial_{\rho} \Pi \partial_{\sigma} \Pi]$$
(7)

The Wess-Zumino-Witten term allows for $3 \rightarrow 2$ annihilation process, which results in DM self-interactions and helps explaining the galactic structure anomaly and DM abundance. It also gives us the $\pi_D \gamma_D \gamma_D$ vertex upon including the gauge fields, specifically from the term:

$$i\frac{ne^{2}}{48\pi^{2}}\epsilon^{\mu\nu\rho\sigma}\partial_{\nu}A_{\rho}A_{\sigma}\text{Tr}[2Q^{2}(U\partial_{\mu}U^{\dagger}-U^{\dagger}\partial_{\mu}U)-QU^{\dagger}Q\partial_{\mu}U+QUQ\partial_{\mu}U^{\dagger}]$$

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model ●00000	Key Processes and Results	Future Goals

The Madgraph Model

Madgraph and Feynrules

We use two key software packages for evaluating our model: **Feynrules** is a Mathematica package, which is used for defining parameters and interactions for quantum field theories, especially physics beyond the standard model. **Madgraph** is a Monte Carlo event generator which is used to simulate particle interactions to generate cross-section and decay rates.

A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185, 2250 (2014), arXiv:1310.1921 [hep-ph]

Alwall, Johan, et al. "MadGraph 5: Going Beyond." Journal of High Energy Physics, vol. 2011, no. 6, June 2011. Crossref, https://doi.org/10.1007/jhep06(2011)128.

We created a Feynrules model for the pion-like DM model and imported the UFO file to Madgraph to generate cross-sections.

- We created a Feynrules model for the pion-like DM model and imported the UFO file to Madgraph to generate cross-sections.
- How do we know the cross-sections we are generating are valid?

- We created a Feynrules model for the pion-like DM model and imported the UFO file to Madgraph to generate cross-sections.
- How do we know the cross-sections we are generating are valid?
- We computed the analytical cross-sections of certain processes, and compared it to the cross-sections generated by Madgraph.

- We created a Feynrules model for the pion-like DM model and imported the UFO file to Madgraph to generate cross-sections.
- How do we know the cross-sections we are generating are valid?
- We computed the analytical cross-sections of certain processes, and compared it to the cross-sections generated by Madgraph.
- A good way to compare the analytical result with the simulated one is to plot the ratio of the cross sections vs beam energy.

Example: Ratio vs Energy for $\pi_D^+ + \pi_D^- \rightarrow \pi_D^0 + \pi_D^0$

For $\pi_D^+ + \pi_D^- \rightarrow \pi_D^0 + \pi_D^0$, the analytical cross-section is:

$$\sigma = \frac{E^2}{4\pi t_\pi^4} \tag{8}$$

Pion-Like Dark Matter

The Madgraph Model

Key Processes and Results

Example: Ratio vs Energy for $\pi_D^+ + \pi_D^- \rightarrow \pi_D^0 + \pi_D^0$

For $\pi_D^+ + \pi_D^- \to \pi_D^0 + \pi_D^0$, the analytical cross-section is:

$$\sigma = \frac{E^2}{4\pi f_\pi^4}$$

(8)

Figure: Ratio vs beam Energy of the process $\pi_D^+\pi_D^- \to \pi_D^0\pi_D^0$

Example: Ratio vs Energy for $K_D^+ + K_D^- \rightarrow K_D^+ + K_D^-$

For ${\it K}^+_D+{\it K}^-_D\to {\it K}^+_D+{\it K}^-_D,$ the analytical cross-section is:

$$\sigma = \frac{E^2}{12\pi^2 f_\pi^4}$$

(9)

Figure: Ratio vs beam Energy of the process $K_D^+ K_D^- \rightarrow K_D^+ K_D^-$

Introduction

Sanity check for the WZW term: $\pi_D^0 \rightarrow \gamma_D + \gamma_D$

To check whether we have the correct implementation of the Wess-Zumino-Witten term, we can check the generated decay rate by Madgraph to our analytics. The decay rate for $\pi_D^0 \to \gamma_D + \gamma_D$ is

$$\Gamma = \frac{\alpha^2 M_{\pi 0}^3}{64\pi^3 f_{\pi}^2}$$
(10)

With
$$f_{\pi} = 0.14, m_{\pi} = 0.135$$
, and $\alpha = \frac{g_D^2}{4\pi}$, we get

 $\Gamma = 3.86459 \times 10^{-9}$

The decay width generated by Madgraph is

$$\Gamma = 3.865 \times 10^{-9} \pm 5.7 \times 10^{-18}$$

This means that our implementation of the WZW term is correct.

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals

Key Processes and Results

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals
_	<i>.</i>			

Processes of key interest

We want to look into two key processes in the theory of SIDM:

Drell-Yan production of two charged Dark Pions:

- Allows us to investigate mili-charged scalars systematically for the experiment.
- Investigate the effects on parameter space when having a non-zero dark gauge field mass
- Is a benchmark for "reasonableness" of the parameter choices that give a non-trivial cross section for the photo-fusion process.

Figure: Drell-Yan production of two charged dark pions

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results 00●00000	Future Goals
Processes	of key interest			

Photo-fusion to three dark pions

- This process would not exist for non pion-like DM, since it is driven by the WZW term.
- If this process has detectable consequences at MAPP and if it can be differentiated from other processes that produce scalars, then we may be able to differentiate this model from other mili-charged scalars.

Figure: Photo-fusion to three pions

Cross Section Plots

- \blacksquare We have a lot of free parameters, and one constraint: $rac{m_\pi}{f_\pi} \lesssim 2\pi$
- This gives us an upper limit on what the pion mass could be. We can also adjust the decay constant at will, as long as the constraint isn't violated.
- We plot the cross-section of both the photo-fusion and Drell-Yan process against the decay constant *f*, and the effective charge, $\epsilon = \kappa e$

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals
Plot of $\log \sigma$	vs f			

Figure: log σ vs f for photo-fusion process

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals
Plot of log	σ vs f			

Figure: $\log \sigma$ vs f for Drell-Yan process

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results 000000●0	Future Goals
Plot of log	τ vs log ϵ			

Figure: $\log \sigma$ vs $\log \epsilon$ for photo-fusion process

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results 0000000●	Future Goals
Plot of log	$\sigma vs \log \epsilon$			

Figure: $\log \sigma$ vs $\log \epsilon$ for Drell-Yan process

Introduction	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals ●O

Introduction 0000000	Pion-Like Dark Matter	The Madgraph Model	Key Processes and Results	Future Goals O●

Take the results generated by Madgraph and run detector simulations

- Take the results generated by Madgraph and run detector simulations
- Look at π-like SIDM at MoEDAL MAPP, and if we can distinguish them from standard mCP.

- Take the results generated by Madgraph and run detector simulations
- Look at π-like SIDM at MoEDAL MAPP, and if we can distinguish them from standard mCP.

Thank You!

