Constraining the Neutron Capture Rate for ⁹⁰Sr through beta-Decay into the Short-Lived ⁹¹Sr Nucleus

WNPPC, Feb. 19 2023 Beau Greaves

Neutron Capture Processes

Roederer et al Astroph. J. 821 (2016) 37

i -process

ERSITY

Constraining Neutron Capture Rates

- Since direct measurements of neutron capture are impossible with radioactive isotopes, we require an alternative
- Instead, we can calculate it using data taken from indirect measurements

\rightarrow The Oslo Method

- Using Brink hypothesis with spin corrections, decay properties can be measured with population by $\beta\text{-decay}$

Intro to the Oslo Method

- The Hauser-Feshbach neutron-capture crosssection is dependent on the Nuclear Level Density (NLD) and γ -Strength Function (γ -SF)
 - NLD: Density of excitation as a function of energy
 - * **\gamma-SF:** Strength of decay for a given γ ray energy
- What data do we need?
 - Nuclear level structure information
 - The ratio of $\gamma\text{-decay}$ intensities as a function of $\gamma\text{-ray}$ energy per parent level
 - \rightarrow Experimentally measure shell structure and y-decays of yield nucleus

$$\sigma_{n\gamma} = \frac{\pi\hbar^2}{2\widetilde{m}_{tn}E_{tn}} \frac{1}{(2J_t+1)(2J_n+1)} \sum_{J,\pi} (2J+1) \frac{\mathcal{T}_n \mathcal{T}_\gamma}{\mathcal{T}_{tot}}$$

$$\mathcal{T}_{\gamma} = \sum_{\nu} \mathcal{T}_{\gamma}^{\nu} + \int_{E^{\nu}}^{E} \sum_{J,\pi} \mathcal{T}_{\gamma}^{\nu} \cdot \boldsymbol{\rho} dE$$

 $\mathcal{T}_{XL}(E_{\gamma}) = 2\pi E_{\gamma}^{(2L+1)} \boldsymbol{f}_{XL}(\boldsymbol{E}_{\gamma})$

β -Decay with SuN

- SuN Total Absorption Spectrometer composed of 8 large volume NaI crystals, each with 3 PMTs
- $\bullet \ SuNTAN-Tape \ Transport \ System$
- Fiber Detector 8-detection via scintillating barrel coupled to PMTs

[A. Simon, S.J. Quinn, A. Spyrou et al, NIM A 703, 16 (2013)]

β -Oslo Method

- Correct (E_{γ}, E_x) matrix for detector response via "unfolding"
- Extract primary γ -rays for each excitation-energy bin
- Extract nuclear level density (NLD) and γ -strength function (γ -SF) from primary γ -ray matrix
- Normalize NLD and $\gamma\text{-}SF$ using known discrete levels and NLD at neutron separation energy S_n
- Use the NLD and $\gamma\text{-}SF$ to guide models to be used as input in the nuclear reaction code TALYS

16

Producing Primary Matrix

Raw matrix

Producing Primary Matrix

"Unfolded" matrix **Raw matrix** 91 Sr.m 06-Sep093 ⁹¹Sr ⁹¹Sr Detector response deconvolution 1.00 2.00 3.00 5.00 E_{γ} E_{γ}

Ex

Producing Primary Matrix

Constraining Nuclear Level Density

Constraining Nuclear Level Density

Constraining γ -ray Strength Function

UNIVERSITY FGUELPH

 γ -ray Energy E_{γ} (MeV)

Constraining γ -ray Strength Function

Experimental Results

Summary

- Populated $^{91}\mathrm{Sr}$ via β -decay at NSCL in 2018 and measured with with SuN total absorption spectrometer
- Performed TAS on data to limit it to only $\beta\text{-decay}$ events from ^{91}Rb
- Performed the Oslo method to produce the primary matrix and extract the NLD and $\gamma\text{-}SF$
- Bound the NLD and $\gamma\text{-}SF$ normalization to theory in order to set final uncertainty on the neutron capture cross section
- Currently in collaboration with modelers to determine the final impact on i-process abundances

Acknowledgements

University of Guelph / TRIUMF - D. Mücher FRIB / Michigan State University - A. Spyrou, C. Harris, B. Lewis, S.N. Liddick, F. Nagvi, A. Palmisano, N. Scielzo, L. Selensky, M.K. Smith, A. Torode, W. VonSeeger, M. Watts Lawrence Livermore National Lab - D.L. Bleuel, A. Richard, A. Sweet University of Oslo - P. DeYoung, M. Guttormson, A.C. Larsen, F. Zeiser University of Notre Dame - A. Drombos Hope College - J. Gombas, C. Persch Pacific Northwest National Lab - S. Lyons iThemba LABS / University of the Witwatersrand - M. Wiedeking University of Kentucky - Y. Xiao

