

Mitigating Cosmogenic Backgrounds in nEXO Ray Tracing Muon Cherenkov Light with Chroma

Soud Al Kharusi, McGill University Winter Nuclear and Particle Physics Conference Feb. 18th 2023

soud.alkharusi@mail.mcgill.ca

https://www.physics.mcgill.ca/~soudal/

- The discovery of neutrino mass from oscillation experiments
 provides new pathways to mass generation in the neutrino sector
 - Dirac vs Majorana masses
 - feeble couplings to Higgs field vs seesaw mechanisms
- Neutrinoless double beta decay (0νββ) exploits the nucleus as a virtual environment to probe high energy physics processes
- Implications for **matter-antimatter asymmetry problem**

- The discovery of neutrino mass from oscillation experiments
 provides new pathways to mass generation in the neutrino sector
 - Dirac vs Majorana masses
 - feeble couplings to Higgs field vs seesaw mechanisms
- Neutrinoless double beta decay (0νββ) exploits the nucleus as a virtual environment to probe high energy physics processes
- Implications for **matter-antimatter asymmetry problem**

- The discovery of neutrino mass from oscillation experiments
 provides new pathways to mass generation in the neutrino sector
 - Dirac vs Majorana masses
 - feeble couplings to Higgs field vs seesaw mechanisms
- Neutrinoless double beta decay (0νββ) exploits the nucleus as a virtual environment to probe high energy physics processes
- Implications for **matter-antimatter asymmetry problem**

- The discovery of neutrino mass from oscillation experiments
 provides new pathways to mass generation in the neutrino sector
 - Dirac vs Majorana masses
 - feeble couplings to Higgs field vs seesaw mechanisms
- Neutrinoless double beta decay (0νββ) exploits the nucleus as a virtual environment to probe high energy physics processes
- Implications for **matter-antimatter asymmetry problem**

Searches for neutrinoless double beta decay ($0\nu\beta\beta$) are searches for lepton number violation & Physics Beyond the Standard Model

n F X 🕅

How would $0\nu\beta\beta$ even work?

How would $0\nu\beta\beta$ even work?

Regardless of what mechanism 0νββ proceeds by, it always implies new physics ("Black box theorem": Schechter, and Valle. Phys. Rev. D 25.11 (1982): 2951)

What is nEXO?

nEXO is a **proposed experiment searching for 0νββ**

currently in the conceptual design stage:

funding for the nEXO project from U.S. DOE has started to flow!

- 5-tonne single-phase liquid xenon Time Projection Chamber (LXe TPC)
- LXe is enriched to 90% in the target isotope, ¹³⁶Xe
- Extensive radio-assay program
 - ultra low backgrounds validated by EXO-200 data

nEXO: Distinguishing Features

- Homogeneous, dense, liquid detector medium with high-Z nucleus
 - online purification
 - self-shielding of γ radiation
 - scalability
- Multiparameter Analysis
- Possibility for control run in case of discovery

nEXO: Distinguishing Features

- Homogeneous, dense, liquid detector medium with high-Z nucleus
 - online purification
 - \circ self-shielding of γ radiation
 - scalability
- Multiparameter Analysis
 - Less sensitive to background fluctuations
 - Robust against unknown external backgrounds
- Possibility for control run in case of discovery

nEXO: Distinguishing Features

- Homogeneous, dense, liquid detector medium with high-Z nucleus
 - online purification
 - self-shielding of γ radiation
 - scalability
- Multiparameter Analysis
 - Less sensitive to background fluctuations
 - Robust against unknown external backgrounds
- Possibility for control run in case of discovery
 - use unenriched xenon & repeat the experiment!

How does nEXO work?

- Energy deposits in the LXe liberate electrons, ionize the surrounding liquid
 - excited dimers of Xe release ~175 nm scintillation light
 - ionization clouds in a 400 V/cm E-field drift to the anode
- Combination of light + charge readout gives us...
- Novel sensing and readout technology

How does nEXO work?

- Energy deposits in the LXe liberate electrons, ionize the surrounding liquid
 - excited dimers of Xe release ~175 nm scintillation light
 - ionization clouds in a 400 V/cm E-field drift to the anode
- Combination of light + charge readout gives us:
 - Better energy resolution
 - Better spatial positioning (localization)
 - Topological discriminator between α , β and γ events
- Novel sensing and readout technology

How does nEXO work?

- Energy deposits in the LXe liberate electrons, ionize the surrounding liquid
 - excited dimers of Xe release ~175 nm scintillation light
 - ionization clouds in a 400 V/cm E-field drift to the anode
- Combination of light + charge readout gives us:
 - Better energy resolution
 - Better spatial positioning (localization)
 - Topological discriminator between α , β and γ events
- Novel sensing and readout technology
 - \circ scintillation light is readout with silicon photomultipliers (SiPMs) → see next talk by B. Chana!
 - drifted charge is collected using custom-made segmented tiles

Multiparameter Analysis A 3D Profile-likelihood Fit

- ~1% energy resolution at $Q_{\beta\beta}$
- standoff distance to detector components (precise event localization, depth in xenon)
- **Topology scoring (DNN)**: single- and multi-site discrimination (β -like vs γ -like event separation)

Eliminates external backgrounds

Eliminates most backgrounds

Multiparameter Analysis What will nEXO data look like?

- 1 and 2σ contours on signal ($0\nu\beta\beta$)
- Deeper in the LXe, backgrounds are quieter, signal dominates... but we use all the LXe in analysis!
- Below: realizations of nEXO 10 yr dataset at 0.74×10^{28} yr half life for $0\nu\beta\beta$ in ¹³⁶Xe (3σ discovery)

Multiparameter Analysis What will nEXO data look like?

- 1 and 2σ contours on signal ($0\nu\beta\beta$)
- Deeper in the LXe, backgrounds are quieter, signal dominates... but we use all the LXe in analysis!
- Below: realizations of nEXO 10 yr dataset at 0.74×10^{28} yr half life for $0\nu\beta\beta$ in ¹³⁶Xe (3σ discovery)

Multiparameter Analysis What will nEXO data look like?

- 1 and 2σ contours on signal ($0\nu\beta\beta$)
- Deeper in the LXe, backgrounds are quieter, signal dominates... but we use all the LXe in analysis!
- Below: realizations of nEXO 10 yr dataset at 0.74×10^{28} yr half life for $0\nu\beta\beta$ in ¹³⁶Xe (3σ discovery)

Multiparameter Analysis nEXO's Ultimate Sensitivity to 0vββ and <m_{ββ}>

- In 10 years of data: sensitivity to 0νββ half life is 1.35x10²⁸ yr (90% C.L. exclusion limit)
 - Effective Majorana mass of the neutrino ≤8 meV; excludes inverted mass ordering parameter space

G Adhikari et al. (nEXO Collaboration), 2022 J. Phys. G: Nucl. Part. Phys. 49 015104

Mitigating Cosmogenic Backgrounds in nEXO, S. Al Kharusi

Multiparameter Analysis A 3D Profile-likelihood Fit

nEX®

- ~1% energy resolution at Q_{BB}
- standoff distance to detector components (precise event localization, depth in xenon)
- **Topology scoring (DNN)**: single- and multi-site discrimination (β -like vs γ -like event separation)

Eliminates external backgrounds

Eliminates most backgrounds

Mitigating Cosmogenic Backgrounds in nEXO, S. Al Kharusi

Cosmogenic Backgrounds

- nEXO is anticipated to be placed 2 km underground at SNOLAB
 - 2 km of rock above shields nEXO from vast majority muons
- Residual muons are high energy $E_u \sim 350 \text{ GeV}$
 - High energy µ disintegrate nuclei in the rock, releasing many neutrons
 - Neutrons capture on and activate nuclei in the detector, distributing them ~uniformly in the TPC
- Activation products can β -decay some time later and mimic a $0\nu\beta\beta$ signal, e.g. ¹³⁷Xe

Cosmogenic Mitigation Strategy nEXO Muon Veto System

- Tag muons by their Cherenkov emission as they • traverse through a large water tank
 - Precise muon timing allows a ~10 ms TPC veto to Ο remove any prompt muon-related deposits

nEX®

ns

Cosmogenic Mitigation Strategy Tagging Neutron Captures

- Tag muons by their Cherenkov emission as they traverse through a large water tank
 - Precise muon timing allows a ~10 ms TPC veto to remove any prompt muon-related deposits
- Tag capture gamma cascades in the TPC, e.g. Xe¹³⁶(n,γ)
 ¹³⁷Xe, for a longer veto to remove cosmogenically
 activated backgrounds
 - Nice! Make use of the dense LXe and high-Z nucleus...

¹³⁶Xe (n, γ) ¹³⁷Xe spectrum

n EX®

Geant4 and Physics...

- Geant4 is a CPU-based Monte Carlo particle tracking software
- Allows for detailed physics analyses of activation in the TPC, and ray tracing of optical physics in water (relatively slow)

Chroma & GPU-based Programming

- Chroma is an <u>open-source</u> GPU-based ray tracing software
 - CAD files importable directly in geometry, *.STL* formats
 - YAML-definable optical properties
 - custom light sources can be implemented
- Parallelized ray tracing and propagation of light
 - ~100x computational speed increase relative to Geant4

Chroma & GPU-based Programming

• We have programmed muon Cherenkov physics into Chroma as a custom light source

$$rac{\partial^2 E}{\partial x\,\partial \omega} = rac{q^2}{4\pi} \mu(\omega) \omega \left(1 - rac{c^2}{v^2 n^2(\omega)}
ight),$$

Frank Tamm formula: defines the Cherenkov photons' frequency spectrum and photon emission/unit length

Chroma & GPU-based Programming

• Parameterized underground muon distributions allow for rapid turnaround of PMT placement, optical property studies...

Light Yields as a Function of Energy

- Mean overall photon yield increases with muon energy
 - \circ 350 GeV : 1.14x10⁶ ~ 89 ph/mm
 - 700 GeV : 1.3x10⁶ ~ **100 ph/mm**
 - 1400 GeV : 1.65x10⁶ ~ **130 ph/mm**
- Chroma result is consistently lower regardless of muon energy
 - Fixed at ~ **52 ph/mm** with no spread
 - Does not include muon shower physics, secondary charged particles (e^{\pm} , π^{\pm} , p^{+} ...)

Distribution of photons produced from μ^- passing vertically down through the full nEXO Outer Detector (shower physics on, Geant4 v10.5 Shielding physics list + Cherenkov). Chroma result is overlaid in dashed line.

EM & Hadronic Shower Production

nEX®

- Spallation neutrons tend to come with large hadronic showers
- Hadronic showers extend ~1 m laterally from the muon track
 - EM showers spread ~0.1 m laterally

FIG. 1 (color online). An electromagnetic shower in water initiated by a 10 GeV electron. The red lines are electrons, and the blue lines are positrons. The x and y axis ranges are chosen to not distort the relative lateral and longitudinal scales.

PHYSICAL REVIEW D 91, 105005 (2015)

Spallation backgrounds in Super-Kamiokande are made in muon-induced showers

Shirley Weishi Li^{1,2,*} and John F. Beacom^{1,2,3,†} ¹Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210, USA ²Department of Physics, Ohio State University, Columbus, Ohio 43210, USA ³Department of Astronomy, Ohio State University, Columbus, Ohio 43210, USA (Received 16 March 2015; published 5 May 2015)

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.105005

FIG. 2 (color online). Schematic diagram of Heitler's model for electromagnetic showers in the growing phase, which continues until the particle energies are below E_c .

Food for thought

• Can we parameterize the shower physics sufficiently well

- so that we can obtain similar photon production distributions in Geant4, Chroma, and other GPU-based softwares?
- retain speed advantages from the GPU parallelization?
- what about the "blurriness" of the resulting Cherenkov ring(s)?

Should these muon showers and other light amplification processes be added into standalone GPU-based programs (Chroma), or should we be pushing GPU capability in Geant4 (G4Opticks)?

Chroma overlay of several muons' photon hit patterns on nEXO Outer Detector cylindrical wall

Summary

- nEXO is searching for Lepton Number Violation via 0νββ
- Tagging muons in the Outer Detector via their water
 Cherenkov emission and neutron activation in the TPC via their (n, γ) emission mitigates cosmogenic backgrounds
- We **developed muon Cherenkov physics in Chroma** to hasten our studies on PMT placement & muon veto efficiency
- Results indicate that **Chroma is under-producing photons** (as expected) due to lack of secondary charged particles

Thank you!

A lot of Chroma/Muon work done by: L. Retty, R. Ross, E. Klemets, A. Jamil

Ask me about nEXO DEI Activities:

- Mentorship program
- Climate surveys
- Outreach

Follow us!

soud.alkharusi@mail.mcgill.ca

https://www.physics.mcgill.ca/~soudal/

Supervisors: T. Brunner, D. Haggard

Mitigating Cosmogenic Backgrounds in nEXO, S. Al Kharusi

CINP

ICPN

o of noval V/LIV/ consitive Silicon Dhate Multiplic

- Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO
- Development of a 127Xe calibration source for nEXO

Thank you!

2021:

2022:

nEXO Publications:

- nEXO: neutrinoless double beta decay search beyond 1028 year half-life sensitivity
- Reflectivity of VUV-sensitive silicon photomultipliers in liquid Xenon
- Event reconstruction in a liquid xenon Time Projection Chamber with an optically-open field cage

2020:

- Reflectance of Silicon Photomultipliers at Vacuum Ultraviolet Wavelengths
- Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode

2019:

- Characterization of the Hamamatsu VUV4 MPPCs for nEXO
- Simulation of charge readout with segmented tiles in nEXO

2018

nEXO pre-conceptual design report

nEXO Sensitivity

Neutrino Mass Measurement, <m_{BB} >

- Half lives of $0\nu\beta\beta$ correspond to an effective Majorana mass of the neutrino $\langle m_{\beta\beta} \rangle$
 - combination of 3 neutrino mass states
 - Assumes dominant $0v\beta\beta$ mechanism is light-Majorana neutrino exchange (minimal model)
- $< m_{\beta\beta} >$ is isotope-independent, but depends on your choice nuclear matrix element (NME, M^{0v}) when converting from a half life measurement to neutrino mass
 - $\circ~~M^{0\nu}$ is the least constrained parameter in the conversion formula below

nEX

nEXO Sensitivity

Neutrino Mass Measurement

In the event that no $0\nu\beta\beta$ signal is seen in nEXO:

- Half life of 0νββ in ¹³⁶Xe must be **above 1.35 x 10²⁸ yr** (90% C.L.)
- Effective Majorana mass of neutrinos <m_{ββ}> must be below ~8 meV (median NME)
 - Neutrino masses are much more likely to have normal ordering (if Majorana)

nEXO Sensitivity Robustness

Confidence in the sensitivity estimate arises from a detailed conservative model with measured input parameters

Backup: unknown external background nEX®

If an unknown decay were strong enough to produce as many SS events in the inner 3000 kg as a 3σ discovery at a half-life of 5.7×10^{27} yr, this decay would produce 271 counts in the MS outer volume, enough to rule out the expected background model at p < 0.00001.

Phys. Rev.C 97, 065503 (2018)

Backup: rotated energy scale

• LXe rotated energy (exploiting anticorrelation in charge and light) allows for optimization of energy resolution

