Electromagnetic Transition Rate Studies in ²⁸Mg

Matthew S. Martin for the TIP/TIGRESS Collaborations

Department of Physics, Simon Fraser University

18 February, 2023

 Shell model works very well near stability

B. A. Brown, Physics 3 104 (2010).

Matthew S. Martin (SFU)

- Shell model works very well near stability
- ► Far from stability, N = 20 shell closure broken

B. A. Brown, Physics 3 104 (2010).

- Shell model works very well near stability
- ► Far from stability, N = 20 shell closure broken
- Intruder states present in low-energy configuration of island of inversion nuclei

B. A. Brown, Physics 3 104 (2010).

- Shell model works very well near stability
- ► Far from stability, N = 20 shell closure broken
- Intruder states present in low-energy configuration of island of inversion nuclei
- These states appear at high excitation energy closer to stability

B. A. Brown, Physics 3 104 (2010).

Electromagnetic Transition Rates

- ▶ Nuclear structure theories model strong force between nucleons
 - Predict nuclear wavefunctions
 - Can calculate theoretical matrix elements

Electromagnetic Transition Rates

- ▶ Nuclear structure theories model strong force between nucleons
 - Predict nuclear wavefunctions
 - Can calculate theoretical matrix elements
- Lifetime of nuclear states

$$au_{theory}^{-1} \propto \left| \left\langle \psi_{\text{ground}} \middle| \hat{E2} \middle| \psi_{\text{excited}} \right\rangle \right|^2 \propto B(E2)$$

- Nuclear structure theories model strong force between nucleons
 - Predict nuclear wavefunctions
 - Can calculate theoretical matrix elements
- Lifetime of nuclear states

$$au_{theory}^{-1} \propto \left| \left\langle \psi_{\text{ground}} \left| \hat{E2} \right| \psi_{\text{excited}} \right\rangle \right|^2 \propto B(E2)$$

- Can compare lifetimes, transition strengths, etc.
 - Really comparing matrix elements

$$\left\langle \psi_{\text{ground}} \middle| \hat{E2} \middle| \psi_{\text{excited}} \right\rangle$$

PHYSICAL REVIEW C 100, 014322 (2019)

Structure of 28 Mg and influence of the neutron pf shell

J. Williams,^{1,*} G. C. Ball,² A. Chester,¹ T. Domingo,¹ A. B. Garnsworthy,² G. Hackman,² J. Henderson,² R. Henderson,² R. Krücken,^{2,3} Anil Kumar,⁴ K. D. Launey,⁵ J. Measures,^{2,6} O. Paetkau,² J. Park,^{2,3} G. H. Sargsyan,⁵ J. Smallcombe,² P. C. Srivastava,⁴ K. Starosta,^{1,†} C. E. Svensson,⁷ K. Whitmore,¹ and M. Williams²

- Doppler Shift Attenuation Method (DSAM) used to determine lifetimes
- Not sensitive to $au \gtrsim 1$ ps
- No precise measurement of 2⁺₁ state lifetime

J. Williams et al. PRC 100 014322 (2019).

P. Fintz et al. Nucl. Phys. A 197 423 (1972).

T.R. Fisher et al. PRC 7 1878 (1973).

Matthew S. Martin (SFU)

WNPPC 2023

► Measurement resolved discrepancy in 4⁺ → 2⁺ transition

J. Williams et al. PRC 100 014322 (2019).

P. Fintz et al. Nucl. Phys. A 197 423 (1972).

T.R. Fisher et al. PRC 7 1878 (1973).

Matthew S. Martin (SFU)

- ► Measurement resolved discrepancy in 4⁺ → 2⁺ transition
- Theoretical calculations disagree on transition strengths

T.R. Fisher et al. PRC 7 1878 (1973).

Matthew S. Martin (SFU)

J. Williams et al. PRC 100 014322 (2019).

P. Fintz et al. Nucl. Phys. A 197 423 (1972).

- ► Measurement resolved discrepancy in 4⁺ → 2⁺ transition
- Theoretical calculations disagree on transition strengths
- ▶ NCSM agrees with $B(E2; 4^+ \rightarrow 2^+)$ measurement

- J. Williams et al. PRC 100 014322 (2019).
- P. Fintz et al. Nucl. Phys. A 197 423 (1972).
- T.R. Fisher et al. PRC 7 1878 (1973).

- ► Measurement resolved discrepancy in 4⁺ → 2⁺ transition
- Theoretical calculations disagree on transition strengths
- ▶ NCSM agrees with $B(E2; 4^+ \rightarrow 2^+)$ measurement
- ► Disagrees with previous measurements of 2⁺ → 0⁺ transition

T.R. Fisher et al. PRC 7 1878 (1973).

Matthew S. Martin (SFU)

SEL

J. Williams et al. PRC 100 014322 (2019).

P. Fintz et al. Nucl. Phys. A 197 423 (1972).

- ► Measurement resolved discrepancy in 4⁺ → 2⁺ transition
- Theoretical calculations disagree on transition strengths
- ▶ NCSM agrees with $B(E2; 4^+ \rightarrow 2^+)$ measurement
- ► Disagrees with previous measurements of 2⁺ → 0⁺ transition
- Provide different conclusions on nuclear properties

T.R. Fisher et al. PRC 7 1878 (1973).

WNPPC 2023

J. Williams et al. PRC 100 014322 (2019).

P. Fintz et al. Nucl. Phys. A 197 423 (1972).

ISAC at TRIUMF

Matthew S. Martin (SFU)

WNPPC 2023

18 February, 2023 6 / 19

Detectors

- Gamma ray detection with TIGRESS HPGe clovers
 - All 16 clovers
- Charged particle detection with Csl Ball
 - ▶ 128 detectors
 - Nearly 4π coverage

J. Williams. PhD Thesis. Simon Fraser University (2019).

Detectors

- Gamma ray detection with TIGRESS HPGe clovers
 - All 16 clovers
- Charged particle detection with Csl Ball
 - 128 detectors
 - Nearly 4π coverage
- Particle-Gamma coincidences allows for selective triggering and offline analysis
 - Essential for isolating low cross-section reactions
 - $\blacktriangleright\,$ i.e. $\sim 1/1000$ reactions results in ^{28}Mg

J. Williams. PhD Thesis. Simon Fraser University (2019).

Beam impinges on target with energy above Coulomb barrier

 $^{18}O(^{12}C, 2p)^{28}Mg$

- Beam impinges on target with energy above Coulomb barrier
- ► Fusion occurs, forming compound nucleus

Fusion Evaporation

- Beam impinges on target with energy above Coulomb barrier
- Fusion occurs, forming compound nucleus
- \blacktriangleright On order of $\sim 10^{-20}$ s, particles evaporate
 - Result is excited state of residual nucleus

Fusion Evaporation

- Beam impinges on target with energy above Coulomb barrier
- Fusion occurs, forming compound nucleus
- \blacktriangleright On order of $\sim 10^{-20}$ s, particles evaporate
 - Result is excited state of residual nucleus
- Residual nucleus de-excites by emission of gamma ray(s)

Matthew S. Martin (SFU)

WNPPC 2023

WNPPC 2023

► Target and stopper are not "thin films" on the scale of the distance

- Target: 2.5 μ m Au backing with 2.5 μ m C target
- Distance: 17 μ m and up
- Stopper: 12 μm Ag
- Flatness needs to be on the micron scale

Plunger

Matthew S. Martin (SFU)

WNPPC 2023

18 February, 2023 12 / 19

Particle-Gated Spectra

Matthew S. Martin (SFU)

WNPPC 2023

Particle-Gated Spectra

Particle-Gated Spectra

Matthew S. Martin (SFU)

WNPPC 2023

Matthew S. Martin (SFU)

WNPPC 2023

18 February, 2023 14 / 19

Experimental RDM Spectra

Experimental RDM Spectra

- Construct full simulated spectrum from linear combination of peaks and GEANT4 simulated RDM lineshapes
 - ▶ *a_i* are free parameters, constrained by feeding transitions

- Construct full simulated spectrum from linear combination of peaks and GEANT4 simulated RDM lineshapes
 - \triangleright a_i are free parameters, constrained by feeding transitions
- Linear combination can then be compared to data
 - Statistical methods applied
 - Best-fit lifetime determined

- ▶ Experimental setup has been constructed in GEANT4
- Can simulate experiment and produce spectra

- ▶ Experimental setup has been constructed in GEANT4
- Can simulate experiment and produce spectra
- Working to reproduce particle energy spectra
 - Particle energy spectra determines resdiual velocity distribution
 - Essential to reproduce in order to get correct Doppler shifts

Csl Particle Energy

- Use reconstructed centre of mass energy spectra of particles to determine reaction parameters
- ▶ Can actually extract a temperature of the fusion-evaporation reaction

 \blacktriangleright kT \sim 2 MeV

► Complete setup of GEANT4 parameters

- ▶ Complete setup of GEANT4 parameters
- Optimize experimental parameters using data
 - Beam location (i.e. not at centre of beam axis)
 - Backing, target, and stopper thicknesses

- ▶ Complete setup of GEANT4 parameters
- Optimize experimental parameters using data
 - Beam location (i.e. not at centre of beam axis)
 - Backing, target, and stopper thicknesses
- Constrain contaminant peak heights using "clean" transitions
 - ▶ Done on a "distance-by-distance" basis

- ▶ Complete setup of GEANT4 parameters
- Optimize experimental parameters using data
 - Beam location (i.e. not at centre of beam axis)
 - Backing, target, and stopper thicknesses
- Constrain contaminant peak heights using "clean" transitions
 - Done on a "distance-by-distance" basis
- ▶ Simulate experiment in GEANT4 for each distance
 - 11 total distances

- ► Complete setup of GEANT4 parameters
- Optimize experimental parameters using data
 - Beam location (i.e. not at centre of beam axis)
 - Backing, target, and stopper thicknesses
- Constrain contaminant peak heights using "clean" transitions
 - Done on a "distance-by-distance" basis
- ▶ Simulate experiment in GEANT4 for each distance
 - 11 total distances
- Apply maximum likelihood method for comparison of simulation and data to determine lifetimes

SFU

Thank you to all those who helped with the experiment

H. Asch¹, A. B. Garnsworthy², C. J. Griffin², G. Hackman²,
G. Leckenby^{2,3}, J. Liang^{2,4}, R. Lubna², C. R. Natzke^{2,5}, C. Pearson²,
A. Redey⁶, K. Starosta⁷, S. Upadhyayula², K. van Wieren⁸, V. Vedia²,
J. Williams², A. Woinoski¹, F. Wu⁷, and D. Yates^{2,3}

¹ Department of Physics, Simon Fraser University

- ² TRIUMF
- ³ Department of Physics and Astronomy, University of British Columbia
- ⁴ Department of Physics and Astronomy, Saint Mary's University
- ⁵ Department of Physics, Colorado School of Mines
- ⁶ School of Engineering Science, Simon Fraser University
- ⁷ Department of Chemistry, Simon Fraser University
- ⁸ Science Technical Centre, Simon Fraser University

Fundamental Interactions

Fundamental Interactions

WNPPC 2023

% TRIUMF

- Radioactive beam facility on Canada's west coast
- Produce a wide array of stable and radioactive beams
- Houses the TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer (TIGRESS) array for in-beam reaction measurements

$$\lambda = \frac{8\pi\alpha c}{e^2} \sum_{\sigma L} \frac{L+1}{L[(2L+1)!!]^2} \left(\frac{E}{\hbar c}\right)^{2L+1} B(\sigma L; I_i \to I_f)$$
(1)

- Charged particles detected by Csl Ball
- Residual nucleus gradually slowed in backing
- Doppler shift dependent on how far into backing residual nucleus gets before emitting gamma ray
- ► Determine lifetime using statistical methods comparing lineshape from experimental data to simulations using GEANT4

- ► RUN 1: Calibration of Csl Ball
- RUN 2: DAQ Shakedown
 - New free-flowing DAQ with no global trigger
 - ▶ Requires reconstruction of events from individual fragments
- RUN 3: Production Run
 - DSAM run with lead-backed target
 - Sensitive to shorter-lived states
 - Represents the "zero-separation" measurement
 - RDM run after
 - 11 plunger distances
 - \blacktriangleright 17 μ m through 400 μ m
 - $\blacktriangleright~\sim\!\!16$ hours per distance to build statistics

- With newly installed GRIFFIN DAQ at TIGRESS, there is no global trigger number
 - Fragments are written with individual timestamps
 - Events need to be reconstructed from individual fragments
- Fragments come from various detector types
 - Csl Ball
 - TIGRESS
 - Central contacts
 - Individual segments
 - BGO suppressors
- Fragment timing is dependent on detector type
 - Time coincidence gates must be applied separately

Waveform Analysis

Can fit waveforms from data

$$W(t) = C + A_F (1 - e^{-(t-t_0)/\tau_F}) e^{-(t-t_0)/\tau_{RC}} + A_S (1 - e^{-(t-t_0)/\tau_S}) e^{-(t-t_0)/\tau_{RC}}$$

- Ratio of slow-to-fast risetime amplitudes [(A_S/A_F) * 100 + 100] used for particle identification
- ▶ More precise determination of t₀

Matthew S. Martin (SFU)

WNPPC 2023

Waveform Analysis

- ► First step in analysis is proper PID
 - Requires determination of particle type

- Alphas (left) and protons (right) result in different waveforms
- Least-squares fit applied to each waveform
 - Ratio of slow-to-fast risetime amplitude used to determine particle type

- \blacktriangleright Coincidence peak ends \lesssim 150 ns
- Resolution allows observation of beam bunches

TIP-TIGRESS Timing

- Reconstruct complete timestamps including CFD and waveform fits
- CsI hits arrive before TIGRESS hits
- Coincidence peak at $|\Delta t| \sim 800$ ns

Particle-Gamma Fold

TIGRESS-Csl Fold

Particle Identification

Calibrated Particle ID

Can group and separate events by particle content

- Detected particle content
- Some events will have particle undetected
- Can include background particles (i.e. cosmics)
- > 2p (²⁸Mg) and 2 α (²²Ne) labelled

³¹Si

1525 keV: ²⁸Si(¹⁸O,2p2n)⁴²Ca

Matthew S. Martin (SFU)

- ▶ Two main contaminant lines interfere with RDM measurement
 - ▶ 1440 keV ³¹Si
 - ▶ 1525 keV ⁴²Ca
- Additional contaminant transitions in multiple PID gates
 - \blacktriangleright ³⁸Ar lines identified in 2 α
 - ▶ ⁴⁰Ar lines identified in α 2p
- Source concluded to be desposition on target during experiment
- PID channels, high statistics, and low-cross section measurement combine to result in these transitions being substantial in spectra
 - Highly sensitive measurement technique
- Cannot remove through particle selection
 - Proton emission spectra are not substantially different
- ▶ Each is in coincidence with a "clean" transition in spectra
 - Can constrain size of contaminants using these
- Need to be accounted for in final simulated spectra

GEANT4 Simulations

- GEometry ANd Tracking, Monte Carlo simulation framework
- Can simulate detector construction and reaction parameters
- Built plunger apparatus and Csl ball geometry
- Fusion-evaporation reactions already constructed
- Simulating experimental setup and comparing to data
- Apply maximum likelihood method for computing lifetimes