60th Winter Nuclear and Particle Physics Conference (WNPPC 2023)

Developing The Detector Array For Energy Measurements Of Neutrons (DAEMON)

Zarin Ahmed (she/her) University of Guelph

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

Beta-delayed neutron emission, βn

- Can occur directly following β -decay ($n \rightarrow p + e^- + \overline{\nu}$) if $Q_{eta} > S_n$
- Detection of emitted neutrons can give valuable information
 - > Neutron emission probabilities
 - > Highly excited states
 - > Neutron energies

Why study βn emission?

- Shaping abundance curve for astrophysical r-process
- Controlling fission in nuclear reactors

explosive astrophysical events. Nature Reviews Physics, 4(5), 306-318.

Why study βn emission?

- Shaping abundance curve for astrophysical r-process
- Controlling fission in nuclear reactors

Siegel, D. M. (2022). r-Process nucleosynthesis in gravitational-wave and other explosive astrophysical events. *Nature Reviews Physics*, 4(5), 306-318.

Time-Of-Flight (TOF) Technique

• Measure neutron energies following βn emission

$$E_n = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{d^2}{TOF^2}$$

- *d*, known flight path
- $TOF = t_2 t_1$, time difference between two detectors
- Energy resolution dependent on flight *d* and *TOF*

$$\frac{\delta E_n}{E_n} = 2\sqrt{\left(\frac{\delta t}{TOF}\right)^2 + \left(\frac{\delta d}{d}\right)^2}$$

Reduced

by

• δd , detector thickness • δt , time resolution of electronics

thin detectors Fast components d

n

e

Start signal β detection t_1

Stop signa

 t_2

Neutron

detection

Canada's particle accelerator centre Centre canadien d'accélération des particules

GRIFFIN Decay Station:

- High efficiency γ-ray spectrometer
- Ancillary detectors:

Zero Degree Scintillator (ZDS)

Deuterated Scintillator Array for Neutron Tagging (DESCANT)

- High detection <u>efficiency</u> of neutrons
- Poor <u>resolution</u> for measuring neutron energies (15cm scintillator depth)

GRIFFIN Decay Station:

- High efficiency γ-ray spectrometer
- Ancillary detectors:

Zero Degree Scintillator (ZDS)

Deuterated Scintillator Array for Neutron Tagging (DESCANT)

- High detection <u>efficiency</u> of neutrons
- Poor <u>resolution</u> for measuring neutron energies (15cm scintillator depth)

$$\frac{\delta E_n}{E_n} = 2\sqrt{\left(\frac{\delta t}{TOF}\right)^2 + \left(\frac{\delta d}{d}\right)^2}$$

Building a powerful all-in-one capability

for broad investigation of neutron-rich species

DAEMON - Detector Array for Energy Measurement of Neutrons

Improved energy resolution $(\delta d \sim 15 \text{ cm vs } \delta d \sim 1.5 \text{ cm})$

DAEMON Components

PLASTIC SCINTILLATOR

✓ Well-suited for fast-timing measurements

✓ Large light attenuation length (380 cm)

 $1cm \times 1cm \times 1cm$

 $1cm \times 1cm \times 6cm$

Eljen EJ-200 plastic scintillator

1.5cm thick hexagon

DAEMON Components

 $4mm \times 4mm$

2x2 array of $6mm \times 6mm$

SCINTILLATION LIGHT COLLECTION

Collected light converted to electrical signal and amplified for processing

Silicon Photomultipliers (SiPM)

- ✓ Alternative to a photomultiplier tube (PMT)
- ✓ Robust, cheaper, less bulky, require relatively small bias voltage (25-50V) compared to PMT that requires 1-2 kV

- Dense array of single photon avalanche diodes (SPAD)
- Each microcell operates independently and in Geiger Mode
- \blacktriangleright Photocurrents from all microcells are summed \rightarrow instantaneous photon flux

Data Acquisition System (DAQ)

- Analog DAQ → To understand SiPM signals
- Digital DAQ → Customizable parameters

➢ Generation 1 : CAEN VX1730 digitizer

 \rightarrow Customizable threshold, pulse polarity, has dynamic range and waveform collection option and event selections

ightarrow Each comes with 16 readout channels

Generation 2: Application-specific integrated circuit (ASIC)

 \rightarrow Currently under investigation

ightarrow Each comes with 64 readout channels

Experimental Comparison

- Simulation [Bidaman, H., PhD dissertation in progress] versus experimental data
 - Ensure Compton edges align
 - Anomalies in comparison

• If simulation for a single unit proves successful, we can confidently make simulations of the whole array

CONCLUSION & NEXT STEPS

- First work with SiPM's as scintillation light collectors by UofG NPG (initial timing resolution measurement as low as 339(4) ps for small scale scintillator-SiPM setup) [Radich, A.J., PhD Dissertation]
- Intensive complementary investigation of experimental and simulations
- On-going & future multi-pixel SiPM and ASIC data acquisition system
- No neutrons were hurt in this work (Unfortunately). Tests with monoenergetic neutron beam
- Introducing powerful capability at TRIUMF-ISAC enabling high-resolution energy measurement of neutrons via TOF, while simultaneously, with DESCANT providing a high efficiency device to tagging on the neutrons (& unsurpassed γ-ray detection efficiency with GRIFFIN)

THANK YOU

University of Guelph

Paul Garrett Vinzenz Bildstein Allison Radich Konstantin Mastakov Harris Bidaman

TRIUMF

Iris Dillmann Adam Garnsworthy

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

*** TRIUMF**

BACK-UP SLIDES

Reactor Physics

- Requires extensive knowledge of decay properties of fission nuclei, which are particularly neutron-rich.
 - Improved accuracy of delayed neutron yields
 - Energy resolution of neutron spectra
- Additional neutron induced fission can occur from some neutron-rich fission products undergoing βn emission.
- Current experimental libraries lack delayed neutron data which are needed for determining decay heat emitted by fission products via β or γ-rays (half-lives, βn abundances & neutron emission probabilities)
- Experimental work at RIB facilities is anticipated to provide data on neutron-rich isotopes that can improve reactor calculations leading to improved design, safety & sustainability.

β -decay strength function & neutron-rich nuclei

$$T_{1/2}^{-1} = \sum_{E_i \ge Q_\beta}^{E_i \le Q_\beta} S_\beta(E_i) \times f(Z, Q_\beta - E_i)$$

- <u>Gamow-Teller (GT)</u> transitions dominate β strength distribution $S_{\beta}(E_i)$ for neutron-rich nuclei
- B(GT) within Q_{β} value has direct influence of β decay half-life
- Theoretical models have high success in B(GT) calculations in limited areas
- Neutron spectroscopy will allow deriving B(GT) for neutron-unbound states
 Evidence of single-particle states influencing B(GT) (M. Madurga et al. 2016)

GW170817 – observation of first neutron star merger (2015)

"for decisive contributions to the LIGO detector and the observation of gravitational waves" 2017 Nobel Prize in Physics

DAEMON Experimental Testing

• Single SiPM with analog and digital DAQ (Radich, A.J., Phd Dissertation)

Threshold Tests

"Poor man's summing" at hardware level

➢ Reduced noise/event rate allowed to go low threshold settings

Reduces cost of electronic channels by a factor of 4

Impedance mismatch – need to test on industrial summing boards

Calibrated Energy of 4 SiPMs Total sum

"Poor-man's summing" Calibration

 $4mm \times 4mm$

2x2 array of $6mm \times 6mm$

Gain	$\sim 1 \times 10^6$	$> 1 \times 10^{6}$
"Efficiency"	~25% QE	~25-50% PDE
Bias voltage	1 – 2 kV	25 - 50 V
Rise time	0.7 ns	0.09 – 0.11 ns

Zero Degree Scintillator (ZDS)

1 mm plastic scintillator (BC422Q)

photomultiplier assembly (Hamamatsu H6533)

 $4mm \times 4mm$

2x2 array of $6mm \times 6mm$

SiPMs – Silicon Photomultipliers (various arrays under testing) Compact, inexpensive, requires low bias voltage

Detector Array for Energy Measurements of Neutrons

(DAEMON)

EJ200 plastic scintillators (various geometries under test)

Has a proven fast time response

Can be machined into complex shapes

 $1cm \times 1cm \times 1cm$

 $1cm \times 1cm \times 6cm$

1.5cm thick hexagon 24

Eljen EJ-200 plastic scintillator

- Scintillation emission wavelengths in the violet-indigo visible region
- Well-suited for fast-timing measurements
- Sensitive to X-rays, γ rays, charged particles and fast neutrons
- Can be machined to different shapes and sizes
- Large light attenuation length (380 cm)
- For critical operating requirements such as high sensitivity and signal uniformity

Rapid Neutron-Capture Process

Data Acquisition System (DAQ)

- Analog DAQ → To understand SiPM signals
- Digital DAQ → Customizable parameters

>Option 1 : CAEN VX1730 digitizer

 \rightarrow Customizable threshold, pulse polarity, has dynamic range and waveform collection option

ightarrow Each comes with 16 readout channels

Option 2: Application-specific integrated circuit (ASIC)

 \rightarrow Currently under investigation

ightarrow Each comes with 64 readout channels

