Mirror symmetry in the $f_{7/2}$ shell below ⁵⁶Ni, excited states and electromagnetic transition rates in ⁵⁵Ni and ⁵⁵Co

H. Asch for the TIP/TIGRESS Collaboration

Department of Physics Simon Fraser University

- ► Can use the the N=Z line to explore mirror symmetry.
 - ► To leading order, protons and neutrons are identical under the strong interaction.

- ► Can use the the N=Z line to explore mirror symmetry.
 - ► To leading order, protons and neutrons are identical under the strong interaction.
- ▶ However, differences appear at higher orders:
 - Masses:

•
$$m_p = 938.3 \text{ MeV/c}^2$$

 $m_n = 939.6 \text{ MeV/c}^2$

- ► Can use the the N=Z line to explore mirror symmetry.
 - ► To leading order, protons and neutrons are identical under the strong interaction.
- ▶ However, differences appear at higher orders:
 - Masses:
 - $m_p = 938.3 \text{ MeV}/c^2$
 - $m_n = 939.6 \text{ MeV}/c^2$
 - Magnetic Moments:

•
$$\mu_p = 2.793 \ \mu_N$$

▶ $\mu_n = -1.913 \ \mu_N$

- ► Can use the the N=Z line to explore mirror symmetry.
 - ► To leading order, protons and neutrons are identical under the strong interaction.
- ▶ However, differences appear at higher orders:
 - Masses:
 - $m_p = 938.3 \text{ MeV}/c^2$
 - $m_n = 939.6 \text{ MeV}/c^2$
 - Magnetic Moments:

•
$$\mu_p = 2.793 \ \mu_N$$

▶ $\mu_n = -1.913 \ \mu_N$

▶ This arises from the charge dependence of the strong interaction.

- ► Can use the the N=Z line to explore mirror symmetry.
 - ► To leading order, protons and neutrons are identical under the strong interaction.
- ▶ However, differences appear at higher orders:
 - Masses:
 - $m_p = 938.3 \text{ MeV}/c^2$
 - $m_n = 939.6 \text{ MeV}/c^2$
 - Magnetic Moments:

•
$$\mu_p = 2.793 \ \mu_N$$

- ▶ $\mu_n = -1.913 \ \mu_N$
- ▶ This arises from the charge dependence of the strong interaction.
- Best viewed in mirror nuclei which are identical under the exchange of proton and neutron counts.

⁵⁵₂₇C 0₂₈ ${}^{55}_{28}\mathrm{Ni}_{27}$ E_x [keV] 3800 $3/2^{+}$ 3759(4)3600 $3/2^{+}$ 3564(3)3400 3323(2) 12° $(1/2^{-})$ 3303(8) 3218(4)3200 $1/2^{-1}$ 11573186(4)2976(8) $(9/2^{-}, 11/2^{-})$ 3000 2960(2)2939(3)- $(9/2^{-}, 11/2^{-})$ 2923(3)2900 /2'2882(8) $\dot{7}/2^{-}$ 2919(8) $(7/2^{-})$ 2842(8)2660(3)2600 $5/2^{-}$ **₩**₩ 2587(4)(5/2)2566(2) $3/2^{-1}$ 2500 3/22466(4)7111 2200 3/22166(2) $3/2^{-}$ 2086(4)2000 $7/2^{-}$ $7/2^{-}$ **** 0

Spieker et al., 2019, PhysRevC.99.051304

 ${}^{55}_{28}{
m Ni}_{27}$ ${}^{55}_{27}{
m C}\,{
m 0}_{28}$ E_x [keV] 3800 $3/2^{+}$ 3759(4)3600 $3/2^{+}$ 3564(3)3400 3323(2) 12° $(1/2^{-})$ 5'/23303(8) 3218(4)3200 1157 $1/2^{-1}$ 3186(4)2976(8) $(9/2^{-}, 11/2^{-})$ 3000 2960(2)2939(3)- $(9/2^-, 11/2^-)$ 2923(3)2900 2882(8)2919(8) $7/2^{-}$ $(7/2^{-})$ 2842(8)2660(3)2600 $5/2^{-}$ **₩**₩ 2587(4)(5/2)2566(2) $3/2^{-1}$ 2500 *** 3/22466(4)711 2200 3/22166(2) $3/2^{-}$ 2086(4)2000 ₹7/2- **•••••** +++++ $7/2^{-}$ 0

Spieker et al., 2019, PhysRevC.99.051304

Spieker et al., 2019, PhysRevC.99.051304

Spieker et al., 2019, PhysRevC.99.051304

Isotope Separator and ACcelerator II (ISAC-II)

▶ Shoot ²¹Na at ⁴⁰Ca

Shoot ²¹Na at ⁴⁰Ca
 Form ⁶¹Ga*

- ► Shoot ²¹Na at ⁴⁰Ca
- ▶ Form ⁶¹Ga*
- Evaporate to ${}^{55}Ni^* + \alpha + p + n$

- ▶ Shoot ²¹Na at ⁴⁰Ca
- ▶ Form ⁶¹Ga*
- Evaporate to ${}^{55}Ni^* + \alpha + p + n$
- De-excite to ${}^{55}Ni + \gamma$'s

- ▶ Shoot ²¹Na at ⁴⁰Ca
- ▶ Form ⁶¹Ga*
- Evaporate to ${}^{55}Ni^* + \alpha + p + n$
- De-excite to ⁵⁵Ni + γ 's
- Remain in ground state until beta decay

Comparison of Reaction Mechanisms

TRIUMF-ISAC Gamma-Ray Escape Supp. Spec.

TRIUMF-ISAC Gamma-Ray Escape Supp. Spec.

Cesium Iodide Ball

40 Ca(20 Ne, α p) 55 Co conducted experiment

This experiment was concluded in June 2022,

- This experiment was concluded in June 2022,
- Utilized a ²⁰Ne beam impinged upon a ⁴⁰Ca target with a thick Gold backing and protected with a Gold envelope,

- This experiment was concluded in June 2022,
- Utilized a ²⁰Ne beam impinged upon a ⁴⁰Ca target with a thick Gold backing and protected with a Gold envelope,
- Ran with three beam energies: 50 MeV, 55 MeV, and 60 MeV,

- This experiment was concluded in June 2022,
- Utilized a ²⁰Ne beam impinged upon a ⁴⁰Ca target with a thick Gold backing and protected with a Gold envelope,
- Ran with three beam energies: 50 MeV, 55 MeV, and 60 MeV,
- Data was successfully collected using both TIGRESS and TIP,

- This experiment was concluded in June 2022,
- Utilized a ²⁰Ne beam impinged upon a ⁴⁰Ca target with a thick Gold backing and protected with a Gold envelope,
- ▶ Ran with three beam energies: 50 MeV, 55 MeV, and 60 MeV,
- Data was successfully collected using both TIGRESS and TIP,
- ▶ The data stream has been verified and reconstructed,

- This experiment was concluded in June 2022,
- Utilized a ²⁰Ne beam impinged upon a ⁴⁰Ca target with a thick Gold backing and protected with a Gold envelope,
- ▶ Ran with three beam energies: 50 MeV, 55 MeV, and 60 MeV,
- Data was successfully collected using both TIGRESS and TIP,
- ▶ The data stream has been verified and reconstructed,
- ▶ Gates have been successfully applied with analysis ongoing,

- This experiment was concluded in June 2022,
- Utilized a ²⁰Ne beam impinged upon a ⁴⁰Ca target with a thick Gold backing and protected with a Gold envelope,
- ▶ Ran with three beam energies: 50 MeV, 55 MeV, and 60 MeV,
- Data was successfully collected using both TIGRESS and TIP,
- ▶ The data stream has been verified and reconstructed,
- ▶ Gates have been successfully applied with analysis ongoing,
- Progress is being made toward quantitative analysis.

▶ This experiment was approved in February 2023,

- ▶ This experiment was approved in February 2023,
- Will utilize a ²¹Na beam impinged upon a ⁴⁰Ca target with a thin Silver support and protected with a Silver envelope,

- This experiment was approved in February 2023,
- Will utilize a ²¹Na beam impinged upon a ⁴⁰Ca target with a thin Silver support and protected with a Silver envelope,
- Planning to run at 79 MeV,

- This experiment was approved in February 2023,
- Will utilize a ²¹Na beam impinged upon a ⁴⁰Ca target with a thin Silver support and protected with a Silver envelope,
- Planning to run at 79 MeV,
- Data will be collected using TIGRESS, TIP and EMMA,

- This experiment was approved in February 2023,
- Will utilize a ²¹Na beam impinged upon a ⁴⁰Ca target with a thin Silver support and protected with a Silver envelope,
- Planning to run at 79 MeV,
- Data will be collected using TIGRESS, TIP and EMMA,
- ▶ The first experiment combining these detector arrays,

- This experiment was approved in February 2023,
- Will utilize a ²¹Na beam impinged upon a ⁴⁰Ca target with a thin Silver support and protected with a Silver envelope,
- Planning to run at 79 MeV,
- Data will be collected using TIGRESS, TIP and EMMA,
- The first experiment combining these detector arrays,
- ▶ Will collect two data streams gated on ⁵⁵Ni's 2882 keV transition:
 - ▶ TIP+TIGRESS: $2\gamma\alpha p$ gate: ~ 1400 events/hour
 - ▶ TIP+TIGRESS+EMMA: $\gamma \alpha p$ with mass gating: ~ 320 events/hour
 - State of the art is 200 total counts.

ElectroMagnetic Mass Analyzer

ElectroMagnetic Mass Analyzer

Event Reconstruction

⁵⁵Co Preliminary Analysis: Event Composition

H. Asch (SFU)

February 18, 2023 16 / 23

⁵⁵Co Preliminary Analysis: Particle Gates

H. Asch (SFU)

February 18, 2023 17 / 23

⁵⁵Co Preliminary Analysis: Beam Energy

H. Asch (SFU)

February 18, 2023 18 / 23

⁵⁵Co Preliminary Analysis: Doppler Shifts

H. Asch (SFU)

February 18, 2023 19 / 23

Doppler-Shift Attenuation Method

GEANT4 simulation framework

Acknowledgements

From Simon Fraser University:

C. Andreoiu¹, D. Annen², M.D.H.K.G. Badanage¹, M.S. Martin², J.S. Dodge², K. Ortner¹, A. Redey³, P. Spagnoletti¹, K. Starosta¹, D. Tam², K. van Wieren⁴, F.T. Wu¹

From TRIUMF:

B. Davids⁵, S. Georges⁵, G. Hackman⁵, J.D. Holt⁵, V. Karayonchev⁵, P. Machule⁵, C. R. Natzke⁵, D. Rhodes⁵, E.J. Williams⁵, D. Yates⁵

From the University of Guelph:

▶ R.J. Coleman⁶, P.E. Garret⁶, E. Kasanda⁶, L. Schmidt⁶, C.E. Svensson⁶

RIUMF

¹Department of Chemistry, Simon Fraser University

²Department of Physics, Simon Fraser University

³School of Engineering Science, Simon Fraser University

⁴Science Technical Centre, Simon Fraser University

⁵TRIUMF

⁶Department of Physics, University of Guelph

Summary

- Calculating ⁵⁵Ni and ⁵⁵Co mirror energy differences.
- Fusion evaporation at TRIUMF:
 ⁴⁰Ca(²¹Na,αpn)⁵⁵Ni
 ⁴⁰Ca(²⁰Ne,αp)⁵⁵Co
- Using the ISAC-II, TIGRESS, TIP and EMMA apparatus.
- Measuring energies of excited states, angular correlations and polarization of γ-rays and lifetimes.
- Comparing isospin dependent parts of both wave functions and operators.

Spieker et al., 2019, PhysRevC.99.051304

Yields for ${}^{40}Ca({}^{21}Na, \alpha pn){}^{55}Ni$ detection

- ► Rates are predicted using the following:
 - PACE4-predicted cross-section is 4.41 mb,
 - ▶ 1.6 mg/cm² Calcium target in a thin Silver envelope,
 - ▶ 10 % beam yield delivered at 79 MeV with 9.2×10^8 part./sec on target,
 - ▶ TIP efficiencies $\varepsilon^{\alpha} = 56\%$ and $\varepsilon^{p} = 70\%$,
 - ▶ TIGRESS CLOVER add-back efficiency of $\varepsilon^{\gamma} = 6.3\%$ at 2882-keV in the high-efficiency mode,
 - EMMA efficiency of $\varepsilon^{\text{EMMA}} = 5\%$.
- $\alpha p \gamma$ with EMMA mass gating:
 - > 2600 counts in the 2882-keV transition per shift,
 - ► Factor of ~13 per shift over the current state of the art at 200 total counts in the 2882-keV transition.
- With EMMA gating replaced with γ - γ coincidence:
 - > 22000 counts in the 2882-keV transition per shift,
 - ► Factor of ~110 per shift over the current state of the art at 200 total counts in the 2882-keV transition.

Experimental Goals

- To be investigated:
 - Energies of excited states,
 - Angular correlations/polarization of γ -rays for spin/parity assignment,
 - Doppler-shift (DSAM) lifetimes.
- Scientific goals:
 - Identification of energy, spins, and parities of excited states in ⁵⁵Ni beyond current state of the art. Establishing Mirror Energy Differences for new states observed in ⁵⁵Ni from a comparison to corresponding states in ⁵⁵Co,
 - 2 Providing reliable data for Shell Model calculations for $f_{7/2}$ neutron hole states near ${}^{56}Ni$,
 - Investigating mirror symmetry via measurements and comparison of electromagnetic transition rates for excited states in ⁵⁵Ni and ⁵⁵Co.

Calcium Targetry for TIP

²¹Na beam scattering into TIP chamber

- At the total fusion cross section of 675 mb the number of fusion-evaporation reactions is 15000 per second,
- ▶ With 22.5 s half life of ²¹Na, 9.2×10⁸ part./sec. beam current and 0.05% scattering probability the steady-state rate of the decaying scattered beam is ~500 kBq; this is ~30 times higher than the fusion reaction rate,
- ²¹Na β⁺ decays to ²¹Ne, at the *Q*-value of 3.5 MeV, 95% will decay directly to the ground state with the remaining 5% dominated by emission of a 350.7 keV γ-ray,
- ▶ The decays will be separated from fusion by:
 - TIP 2-particle trigger combined with the energy threshold optimized for each of 128 individual Csl detectors,
 - Timing with respect to the LINAC RF,
 - Csl pulse shape discrimination.

²¹Na beam scattering into TIP chamber via GEANT4

⁵⁵Co Preliminary Analysis: Energy Calibration

• Calibrated γ -ray energy in each TIGRESS crystal

Csl Ball in GEANT4 with Plunger

Csl Pulse Shape Discrimination

P. Voss et. al. Nucl. Inst. Meth. A746 (2014) 87.

Particle Identification with RIBs

(a) Electrons from β^- decay (b) Al recoils from Coulex reaction A. Chester *et al.*, Phys. Rev. **C96**, 011302**R** (2017).

H. Asch (SFU)

WNPPC

Results of the ²⁸Si(³⁶Ar, $2\alpha n$) GS/MB experiment

Reported 200 counts in the 2882-keV peak.

D. Rudolph et. al., Z. Phys. A 358 (1997) 379.

Results of the ²⁸Si(³⁶Ar, $2\alpha n$) GS/MB experiment

▶ Theory places the state of 15/2⁻ below the state of 11/2⁻.

D. Rudolph et. al., Z. Phys. A 358 (1997) 379.