The Experimental Study of Shape Coexistence in ${ }^{114}$ Sn via GRIFFIN

Dominic W.B. Annen The Andreoiu Group
 Simon Fraser University, Burnaby BC

WNPPC 2023 - Banff, Alberta February 18 ${ }^{\text {th }} 2023$

Shell Model and "Magic" Nuclei

ELECTRONS
NUCLEONS

- Nucleons arranged in respective shells
- Filled valence shells are associated with increased stability
- "Doubly- / Singly-Magic"
- "Magic" nuclei characteristically spherical in ground state

Quadrupole Deformation

Oblate (earth)

Prolate (rugby ball)

from NNDC NuDat

Signatures of Nuclear Shape: B(E2)

- Non-magic ${ }^{130} \mathrm{Ba}$ shows highly collective excitations
- High B(E2) values
- Indicative of the rotational band and deformed nuclear shape
- Singly-magic ${ }^{134} \mathrm{Te}$ shows non-collective excitations
- Low B(E2) values
- Seniority scheme implies sphericity

${ }^{186} \mathrm{~Pb}$ and Shape Coexistence

- $\mathrm{Z}=82$ closed proton shell implying spherical shape in g.s.
- Shape coexistence is Two or more states having distinct properties and different intrinsic shapes within a narrow energy range
- Characterized by rotational bands of excited states allowed by deformed shapes (prolate \& oblate, etc.)

Ojala, J. et al. Reassigning the shapes of the 0^{+}states in the ${ }^{186} \mathrm{~Pb}$ nucleus. Commun Phys 5, 213 (2022)

Shape Coexistence in Sn Isotopes

- Closed proton shell @ Z=50
- Near spherical g.s.
- First excited 2^{+}corresponds to a noncollective breaking of neutron-pair
- Excitation $\mathrm{E} \approx 1.3 \mathrm{MeV}$
- Low B(E2; $2_{1}{ }^{+} \rightarrow 0_{1}{ }^{+}$)
- Mid-shell rotational band built upon 2p-2h configuration
- Hypothesised to be built upon $\mathrm{O}_{2}{ }^{+}$ state (blue)

${ }^{116}$ Sn Shape Coexistence

- Findings from Pore et. al (2016) regarding ${ }^{116}$ Sn suggest a reevaluation of the head of the $2 p-2 h$ band within this nucleus
- $\mathrm{B}\left(\mathrm{E} 2 ; 2^{+}{ }_{2} \rightarrow \mathrm{O}^{+}{ }_{3}\right) / \mathrm{B}\left(\mathrm{E} 2 ; 2^{+}{ }_{2} \rightarrow 0^{+}{ }_{2}\right) \approx 2.2$
- Based upon intensity measurement of very weak $85-\mathrm{keV}$ transition

$E_{\text {level }}$ (keV)	$T_{1 / 2}$ ref. $[5]$	$J_{i}^{\pi} \rightarrow J_{f}^{\pi}$	E_{γ} (keV)	I_{γ}	$B R_{\gamma}$	$B(E 2)$ (W.u.)
$2112.19(14)$	$1.89(10) \mathrm{ps}$	$2_{2}^{+} \rightarrow 0_{3}^{+}$	$85.294(88)$	$0.00166(10)$	$0.0091(6)$	$99.7(84)$
		$2_{2}^{+} \rightarrow 0_{2}^{+}$	$355.432(18)$	$0.939(23)$	$5.16(14)$	$44.4(28)$

A Case for ${ }^{114}$ Sn Inquiry

- ${ }^{114} \mathrm{Sn}$ level scheme is highly similar to that of ${ }^{116} \mathrm{Sn}$ and other mid-shell Tin isotopes
- Missing observation of key $2_{2}{ }^{+} \rightarrow 0_{3}{ }^{+}$transition
- No established lifetime or branching ratios from $2_{2}{ }^{+}$state of interest
- Existing lifetime lower limit of $\tau>2.1 \mathrm{ps}$
- Most recent β-decay study of ${ }^{114} \mathrm{Sb} \rightarrow{ }^{114} \mathrm{Sn}$ was M. E. J. Wigmans et. Al, Phys. Rev. C 14, 229 (1976)

Challenge of the 82-keV Transition

$$
\frac{\lambda\left(2_{2}^{+} \rightarrow 0_{3}^{+}\right)}{\lambda\left(2_{2}^{+} \rightarrow 0_{1}^{+}\right)}=\left[\frac{E_{\gamma}\left(2_{2}^{+} \rightarrow 0_{3}^{+}\right)}{\left.E_{\gamma} 2_{2}^{+} \rightarrow 0_{1}^{+}\right)}\right]^{5}=\left[\frac{82 \mathrm{keV}}{2239 \mathrm{keV}}\right]^{5}=6.6 \times 10^{-8}
$$

Eqn. 1 - Decay rate ratio of competing $2_{2}{ }^{+} \rightarrow \mathrm{O}_{3}{ }^{+}(82 \mathrm{keV})$ to $2_{2}{ }^{+} \rightarrow \mathrm{O}_{1}{ }^{+}(2239 \mathrm{keV})$ transitions via
single particle estimate

- For E2 transitions, transition rate is proportional to E_{γ}^{5}
- Energetic favourability of $2239-\mathrm{keV}$ transition depopulating the $2_{2}{ }^{+}$state is predicted to occur 1.52×10^{7} times for each $82-\mathrm{keV}$ transition
- If consistent with Pore et. al's measurements the relative intensity of the $82-\mathrm{keV}$ transition is predicted to be increased by a factor of 10^{3}

ISAC @ TRIUMF

GRIFFIN Spectrometer

γ-Events

- High intensity of ${ }^{114} \mathrm{In}$ imposed significant limitations on DAQ

	Proposal	Experiment
Beam Intensity	1.0 E 6 pps	5.0 E 5 pps
$\mathbf{t}_{\text {implantation }}$	2100 s	390 s
$\mathbf{t}_{\text {decay }}$	210 s	390 s

γ-Efficiency

Simulated Efficiency
vs. Experimental Efficiency

$\gamma-\gamma$ Coincidence

Partial Level Scheme of ${ }^{114}$ Sn

856-keV Gate

856-keV Gate (zoom)

Conclusions and Outlook

- ${ }^{114} \mathrm{Sn}^{*}$ populated via ${ }^{114} \mathrm{Sb}$ decay to GRIFFIN w/ intensity of 5E5 pps over ~ 48 hour experiment
- 5.7 TB of data collected over ~ 48 hours of beam-time
- Preliminary analysis of $\gamma-\gamma$ coincidences did not observe the weak $2^{+}{ }_{2} \rightarrow 0^{+}{ }_{3}$ transition
- Established the upper limit $B\left(E 2 ; 2^{+}{ }_{2} \rightarrow 0^{+}{ }_{3}\right) / B\left(E 2 ; 2^{+}{ }_{2} \rightarrow 0^{+}{ }_{2}\right) \leq 10$
- Established upper limit on Branching ratio $\left(2^{+}{ }_{2} \rightarrow 0^{+}{ }_{3}\right) /\left(2^{+}{ }_{2} \rightarrow 0^{+}{ }_{2}\right) \leq 0.0207$
- E0 transitions, $\gamma-\gamma-\gamma$ coincidences, and feeding ratios still to be investigated
- A large number of $\gamma-\gamma$ coincidences have been collected
- Extend level scheme of ${ }^{114} \mathrm{Sn}$
- $\quad \gamma-\gamma$ angular correlation measurements
- Fast-timing measurements with $\mathrm{LaBr}_{3}(\mathrm{Ce})$ detectors
- Significant amount of analysis ahead

Acknowledgements

The Andreoiu Group - SFU Dept. of Chemistry:
Dr. Corina Andreoiu
Dr. Pietro Spagnoletti
Kevin Ortner
Frank Wu
Further Contributions from:
Heinz Asch (SFU Dept. of Physics)
Nicole Chieshlivi (CSM Dept. of Engineering)
Madison Daignault (SFU Dept. of Chemistry)
Isaiah Djianto (SFU Dept. of Chemistry)
Matthew Martin (SFU Dept. of Physics)
Dr. Krzysztof Starosta (SFU Dept. of Chemistry)
Elliot Wadge (SFU Dept. of Physics)

Nuclear Shapes*

- Described by a multipole expansion in λ :

$$
-R(\theta, \phi)=c(\alpha) R_{0}\left[1+\sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda \mu} Y_{\lambda \mu}(\theta, \phi)\right]
$$

- Multipole order: 2^{λ}
- $2^{0}=$ monopole - breathing mode
- $2^{1}=$ dipole - center of mass shift
- $2^{2}=$ quadrupole - reflection symmetric deformation
- Deformed nuclear shape arises from long-range multipolemultipole interactions between protons and neutrons in the

Oblate (earth)

Prolate (rugby ball)
 nuclear valence space

${ }^{186}$ Pb Shape Coexistence*

- Two or more states having distinct properties and different intrinsic shapes within a narrow energy range
- Characterized by rotational bands of excited states allowed by deformed shapes (prolate \& oblate, etc.)

Decay of ${ }^{114} S b$ to ${ }^{114} S n * *$

β^{+}-decay

- Protons are spontaneously converted to neutrons, releasing a positron and an electron neutrino

Electron Capture (EC)

- Proton spontaneously captures an atomic electron, converting it to a neutron and neutrino

GRIFFIN Spectrometer*

GRIFFIN Spectrometer*

SFU

γ-Events*

