The Experimental Study of Shape Coexistence in ¹¹⁴Sn via GRIFFIN

Dominic W.B. Annen The Andreoiu Group

Simon Fraser University, Burnaby BC

WNPPC 2023 - Banff, Alberta February 18th 2023

Dominic Annen

Shell Model and "Magic" Nuclei

- Nucleons arranged in respective shells
- Filled valence shells are associated with increased stability
 - "Doubly- / Singly-Magic"
- "Magic" nuclei characteristically spherical in ground state

Quadrupole Deformation

Oblate (earth)

Prolate (rugby ball)

Excitation energy of the 2_1^+ state in even-even nuclei

from NNDC NuDat

Signatures of Nuclear Shape: B(E2)

- Non-magic ¹³⁰Ba shows highly collective excitations
 - High B(E2) values
 - Indicative of the rotational band and deformed nuclear shape
- Singly-magic ¹³⁴Te shows non-collective excitations
 - Low B(E2) values
 - Seniority scheme implies sphericity

Rotational Band

Seniority Scheme

¹⁸⁶Pb and Shape Coexistence

Dominic Annen

• Z=82 closed proton shell implying spherical shape in g.s.

- Shape coexistence is Two or more states having distinct properties and different intrinsic shapes within a narrow energy range
 - Characterized by rotational bands of excited states allowed by deformed shapes (prolate & oblate, etc.)

≈TRIUMF

SFU

Ojala, J. et al. Reassigning the shapes of the 0⁺ states in the ¹⁸⁶Pb nucleus. Commun Phys 5, 213 (2022)

Shape Coexistence in Sn Isotopes

Dominic Annen

- Closed proton shell @ Z=50
- Near spherical g.s.

SFL

- First excited 2⁺ corresponds to a noncollective breaking of neutron-pair
 - Excitation E ≈ 1.3 MeV
 - Low B(E2; $2_1^+ \rightarrow 0_1^+$)
- Mid-shell rotational band built upon 2p-2h configuration
 - Hypothesised to be built upon 0_2^+ state (blue)

ℛTRIUMF

Garrett P. E. et al. An experimental view on shape coexistence in nuclei. Progress in Particle and Nuclear Physics 124, (2022),

¹¹⁶Sn Shape Coexistence

- Findings from Pore et. al (2016) regarding ¹¹⁶Sn suggest a reevaluation of the head of the 2p-2h band within this nucleus
 - B(E2;2⁺₂ \rightarrow 0⁺₃) / B(E2;2⁺₂ \rightarrow 0⁺₂) \approx 2.2

SFU

GRIFFIN

 Based upon intensity measurement of very weak 85-keV transition

ଝ TRIUMF Dominic Ann			nen		NSERC	7	
2112	2.19(14)	$1.89(10) \mathrm{ps}$	$\begin{array}{c} 2^+_2 \rightarrow 0^+_3 \\ 2^+_2 \rightarrow 0^+_2 \end{array}$	85.294(88) 355.432(18)	$0.00166(10) \\ 0.939(23)$	$\begin{array}{c} 0.0091(6) \\ 5.16(14) \end{array}$	$99.7(84) \\ 44.4(28)$
E_{lev} (keV	el	$T_{1/2}$ ref. [5]	$J_i^{\pi} \to J_f^{\pi}$	E_{γ} (keV)	I_{γ}	BR_{γ}	$\begin{array}{c} B(E2) \\ (W.u.) \end{array}$

A Case for ¹¹⁴Sn Inquiry

- ¹¹⁴Sn level scheme is highly similar to that of ¹¹⁶Sn and other mid-shell Tin isotopes
 - Missing observation of key $2_2^+ \rightarrow 0_3^+$ transition
- No established lifetime or branching ratios from 2₂⁺ state of interest
 - Existing lifetime lower limit of τ > 2.1 ps
- Most recent β-decay study of ¹¹⁴Sb→¹¹⁴Sn was M. E. J.
 Wigmans et. Al, Phys. Rev. C 14, 229 (1976)

Challenge of the 82-keV Transition

$$\frac{\lambda(2_2^+ \to 0_3^+)}{\lambda(2_2^+ \to 0_1^+)} = \left[\frac{E_{\gamma}(2_2^+ \to 0_3^+)}{E_{\gamma}2_2^+ \to 0_1^+)}\right]^5 = \left[\frac{82keV}{2239keV}\right]^5 = 6.6 \times 10^{-8}$$

Eqn. 1 – Decay rate ratio of competing $2_2^+ \rightarrow 0_3^+$ (82keV) to $2_2^+ \rightarrow 0_1^+$ (2239keV) transitions via single particle estimate

- For E2 transitions, transition rate is proportional to E_{γ}^5
- Energetic favourability of 2239-keV transition depopulating the 2₂⁺ state is predicted to occur 1.52 x10⁷ times for each 82-keV transition
- If consistent with Pore et. al's measurements the relative intensity of the 82-keV transition is predicted to be increased by a factor of 10³

9

SFL

ISAC @ TRIUMF

Dominic Annen

GRIFFIN Spectrometer

Dominic Annen

• High intensity of ¹¹⁴In imposed significant limitations on DAQ

	Proposal	Experiment
Beam Intensity	1.0E6 pps	5.0E5 pps
t _{implantation}	2100 s	390 s
t _{decay}	210 s	390 s

Simulated Efficiency vs. Experimental Efficiency

γ - γ Coincidence

SFU

GRIFFIN

፨TRIUMF

Partial Level Scheme of ¹¹⁴Sn

856-keV Gate

856-keV Gate (zoom)

SFU GRIFFIN **& TRIUMF**

Dominic Annen

Conclusions and Outlook

- ¹¹⁴Sn^{*} populated via ¹¹⁴Sb decay to GRIFFIN w/ intensity of 5E5 pps over ~48 hour experiment
- 5.7 TB of data collected over ~48 hours of beam-time
- Preliminary analysis of γ - γ coincidences did not observe the weak $2^+_2 \rightarrow 0^+_3$ transition
 - Established the upper limit $B(E2;2_2^+ \rightarrow 0_3^+) / B(E2;2_2^+ \rightarrow 0_2^+) \le 10$
 - Established upper limit on Branching ratio $(2_2^+ \rightarrow 0_3^+) / (2_2^+ \rightarrow 0_2^+) \le 0.0207$
 - E0 transitions, γ - γ - γ coincidences, and feeding ratios still to be investigated

Dominic Annen

- A large number of γ - γ coincidences have been collected
 - Extend level scheme of ¹¹⁴Sn

∂ TRIUMF

- γ-γ angular correlation measurements
- Fast-timing measurements with LaBr₃ (Ce) detectors
- Significant amount of analysis ahead

SFL

Acknowledgements

The Andreoiu Group - SFU Dept. of Chemistry:

Dr. Corina Andreoiu

Dr. Pietro Spagnoletti

Kevin Ortner

Frank Wu

Further Contributions from:

Heinz Asch (SFU Dept. of Physics) Nicole Chieshlivi (CSM Dept. of Engineering) Madison Daignault (SFU Dept. of Chemistry) Isaiah Djianto (SFU Dept. of Chemistry) Matthew Martin (SFU Dept. of Physics) Dr. Krzysztof Starosta (SFU Dept. of Chemistry) Elliot Wadge (SFU Dept. of Physics)

Dominic Annen

Nuclear Shapes*

• Described by a multipole expansion in λ :

$$- R(\theta,\phi) = c(\alpha)R_0 \left[1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} Y_{\lambda\mu}(\theta,\phi) \right]$$

- Multipole order: 2^{λ}
 - $2^0 =$ monopole breathing mode
 - 2^1 = dipole center of mass shift
 - $2^2 =$ quadrupole reflection symmetric deformation
- Deformed nuclear shape arises from long-range multipolemultipole interactions between protons and neutrons in the nuclear valence space

Oblate (earth)

Prolate (rugby ball)

¹⁸⁶Pb Shape Coexistence*

- Two or more states having distinct properties and different intrinsic shapes within a narrow energy range
 - Characterized by rotational bands of excited states allowed by deformed shapes (prolate & oblate, etc.)

Decay of ¹¹⁴Sb to ¹¹⁴Sn**

β⁺-decay

 Protons are spontaneously converted to neutrons, releasing a positron and an electron neutrino

Electron Capture (EC)

 Proton spontaneously captures an atomic electron, converting it to a neutron and neutrino

GRIFFIN Spectrometer*

GRIFFIN Spectrometer*

Dominic Annen

Dominic Annen

