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Neutron Scattering
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• Wavelength comparable with interatomic spacings 
• Kinetic energy comparable with that of atoms in a solid 
• Interacts with an atom's nucleus, the bulk properties are measured and sample 

can be contained 
• Carry no charge
• Weak interaction with matter aids interpretation of scattering data 
• Isotopic sensitivity allows contrast variation 
• Neutron magnetic moment couples to B, so the neutron “sees” unpaired 

electron spins 

Neutron Scattering
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• Why do Neutron Scattering?
• Neutrons show you where the atoms are

Neutron Scattering

Sorted neutrons at a 
specific wavelength/
energy. Monochromatic 
neutrons

Atoms in a crystalline structure
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• Why do Neutron Scattering?
• Neutrons show you where the atoms are

Neutron Scattering

Sorted neutrons at a 
specific wavelength/
energy. Monochromatic 
neutrons

The neutrons collide 
with atoms and change 
direction. The neutrons 
are scattered elastically

Detectors record 
the directions of 
the neutrons 
forming a 
diffraction pattern

Atoms in a crystalline structure
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• Why do Neutron Scattering?
• Neutrons show you what the atoms do

Neutron Scattering

Sorted neutrons at 
a specific 
wavelength/energy. 
Monochromatic 
neutrons

The neutrons penetrate 
the sample and start or 
cancel oscillations 

Atoms in a crystalline structure
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• Why do Neutron Scattering?
• Neutrons show you what the atoms do

Neutron Scattering

Sorted neutrons at 
a specific 
wavelength/energy. 
Monochromatic 
neutrons

The neutrons penetrate 
the sample and start or 
cancel oscillations 

Changes in the 
energy of the 
neutron are analyzed

Neutrons are 
counted in the 
detector

Atoms in a crystalline structure
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• It also works with other types of sample

Neutron Scattering

Sorted neutrons at 
a specific 
wavelength/energy. 
Monochromatic 
neutrons

The neutrons penetrate the 
sample Neutrons interact 
with the dynamics and gain 
or loses energy 

Changes in the 
energy of the 
neutron are analyzed

Neutrons are 
counted in the 
detector

Protein structure



Extracted native lignin Computational model of native lignin

Syringyl (s)

Guaiacyl (G)

p-Hydroxyphenyl (H)
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Neutron Scattering

Sorted neutrons at 
a specific 
wavelength/energy. 
Monochromatic 
neutrons

The neutrons penetrate the 
sample Neutrons interact 
with the dynamics and gain 
or loses energy 

Changes in the 
energy of the 
neutron are analyzed

Neutrons are 
counted in the 
detector

Plant polymers

• It also works with other types of sample
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• Scattering properties of sample depend only on momentum and energy
• Not on neutron wavelengths

Neutron Scattering

Conservation of momentum: Q = kf – ki 
Conservation of energy: E = ( h2 m/ 8 π2 ) (kf2 - ki2)

Elastic scattering:
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• Scattering properties of sample depend only on momentum and energy
• Not on neutron wavelengths

Neutron Scattering

Conservation of momentum: Q = kf – ki 
Conservation of energy: E = ( h2 m/ 8 π2 ) (kf2 - ki2)

Inelastic scattering:
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• Scattering properties of sample depend only on momentum and energy
• Not on neutron wavelengths

Neutron Scattering

Conservation of momentum: Q = kf – ki 
Conservation of energy: E = ( h2 m/ 8 π2 ) (kf2 - ki2)

• Many types of neutron 
scattering instrument are 
required because the 
accessible Q and E depend 
on neutron energy 

• Resolution and detector 
coverage have to be 
tailored to the science for 
such a signal-limited 
technique
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• Neutrons can be used to investigate different time- and length-scales

Neutron Scattering
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• Neutron Scattering Requires Intense Sources of Neutrons
• Neutrons for scattering experiments can be produced either by: 

• Nuclear fission in a reactor 

• Spallation when high-energy protons strike a heavy metal 
target (W, Ta, or U) 

Neutron Scattering
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• Using the beam to investigate different sample properties

Neutron Scattering

wavelength (λ)

The distribution of 
wavelength (λ) 
varies with different 
facilities
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• Using the beam to investigate different sample properties

• Each instrument uses a different part of the beam 

Neutron Scattering

wavelength (λ)

The distribution of 
wavelength (λ) 
varies with different 
facilities
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• Using the beam to investigate different sample properties

• Each instrument uses a different part of the beam 

Neutron Scattering

wavelength (λ)

The distribution of 
wavelength (λ) 
varies with different 
facilities

SNS instrument layout (ORNL)
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• Sustainability

Motivation

Adapted from © Copyright IEA Bioenergy 2020
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Motivation

Lignin is a class of complex organic 
polymers that form key structural materials 
in the support tissues of plants

Adapted from © Copyright IEA Bioenergy 2020
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Motivation

Lignin is a class of complex organic 
polymers that form key structural materials 
in the support tissues of plants.

Adapted from © Copyright IEA Bioenergy 2020

This study aims to understand the 
underlying processes that cause the 
dynamical increase of lignin motion
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• To facilitate deconstruction it is necessary to “soften” lignin
• Increasing lignin atomic fluctuations

Neutron Scattering: Biomass
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• To facilitate deconstruction it is necessary to “soften” lignin
• Increasing lignin atomic fluctuations

• Pretreatment involves high temperatures and solvents

Neutron Scattering: Biomass
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• To facilitate deconstruction it is necessary to “soften” lignin
• Increasing lignin atomic fluctuations

Neutron Scattering: Biomass
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• S(Q,ω)=Sinc(Q,ω)+ Scoh(Q,ω) -total signal is weighted by its respective 
cross-section of each coherent and incoherent term

Neutron Scattering: Biomass
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• Quasi-elastic neutron scattering

Neutron Scattering: Biomass

Broadened energy distribution

S(
Q

,ω
)
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• Experimental data collected at SNS at Oak Ridge National Laboratory
• Dynamics "activities" at different temperatures

Neutron Scattering: Biomass
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• The broadening as a function of wavevector describes the dynamics

Neutron Scattering: Biomass
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Conclusion

dynamics at low temperatures
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Methods: Molecular dynamics simulations (MD) and QENS
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•MD probes similar 
length- and time-
scales as QENS.


•MD access a broad 
range of time scales 
and provides a full 
atomistic model of 
the system. 


MD



Building a computational model with the same "properties" as the sample

Extracted native lignin Computational model of native lignin

Syringyl (s)

Guaiacyl (G)

p-Hydroxyphenyl (H)
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Sample and Model

Extracted native lignin Computational model of native lignin

Syringyl (s)

Guaiacyl (G)

p-Hydroxyphenyl (H)

Density


Composition
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Dynamics in lignin: MD
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