

Jessie Shelton UIUC

GUINEAPIG Montreal July 11, 2023

PROBING COSMIC HISTORIES IN THE LAB

DIRECT DETECTION AND DARK SECTORS

Direct detection experiments are now so sensitive that searches for dark sectors must make assumptions about the thermal history of dark matter

DIRECT DETECTION AND DARK SECTORS

Generically true for models with dark forces

► Higgs-portal mediator example:

[Evans, Gori, JS]

DIRECT DETECTION AND FREEZE-IN

► For sub-GeV dark matter, freeze-in models are key targets

DIRECT DETECTION AND FREEZE-IN

- Setting out to test out-of-equilibrium models requires more careful thought than testing WIMPy models
- Thermal equilibrium is a profound simplifier
 - Simpler calculations: easier to translate model into prediction
 - Erases dependence on initial conditions

FREEZE-IN

Freeze-in with light mediators is UV-insensitive: production rate falls off more slowly than Hubble

► Freeze-in: $\dot{n}_{\chi} + 3Hn_{\chi} = 2\langle \sigma v \rangle n_f^2$

SM / *X*

- > SM source term shuts off at $T \sim m_{\chi}$
- > Residual UV sensitivity: initial condition on n_{χ}
 - (very very small) constant off-set in relic abundance

FREEZE-IN, FREEZE-OUT

- However in models with a light mediator, subsequent interactions among the dark particles can be very important
- ► Assuming dark sector is in kinetic equilibrium:

FREEZE-IN, FREEZE-OUT

- ► Initial conditions also for dark photon: parameterize as initial temperature ratio $\xi_i = T(a_i)/T_{SM}(a_i)$
 - ► An assumption: internal kinetic equilibrium
 - ► How does DM abundance depend on this initial condition?
 - ► What aspects remain UV-insensitive?

TEMPERATURE EVOLUTION: LEAK-IN

Energy injection into hidden radiation bath makes it evolve non-adiabatically:

► UV-insensitive quasi-static equilibrium phase: leak-in

> attractor solution: $\propto \epsilon^2 \alpha_D$

[Chu, Hambye, Tytgat; Evans, Gaidau, JS]

KINETIC EQUILIBRATION

this attractor solution helps extend region where instantaneous kinetic equilibration is a good approximation:

[Fernandez, Kahn, JS]

[[]Fernandez, Kahn, JS]

INITIAL CONDITION DEPENDENCE

► postdictions: boundary between initially over/under abundant DM is robust against attractor solution for (α_D, ϵ) near end of FI line

INITIAL CONDITION DEPENDENCE FOR DIRECT DETECTION

currently direct detection is probing UV-insensitive regions, but near the 'freeze-in' target predictions diverge depending on initial conditions

[Fernandez, Kahn, JS]

INITIAL CONDITIONS?

- Dark sectors with light mediators will have some initial population from inflationary dynamics:
 - inflationary production:
 - excitement during
 reheating [Ema, Jinno, Mukaida, Nakayama; ...; Brandenberger, Kamali, Ramos]
 - This population is initially highly nonthermal and details of thermalization can unfortunately matter

[Arvanitaki, Dimopoulos, Galanis, Racco, Simon, Thompson]

THE LATE EARLY UNIVERSE

PROBES OF THE HOMOGENEOUS UNIVERSE

- Excellent agreement between BBN, CMB can stringently constrain departures from LCDM
 - N_{eff}, both constant and time-varying, Y_p: constraints on lowmass dark sectors [e.g.: Hufnagel, Schmidt-Hoberg, Wild; An, Gluscevic, Calabrese, Hill; ...]
 - ► BBN as well as CMB constraints are tightening or will soon
 - ► CMB: upcoming S4 experiment
 - BBN: measurements from LUNA collaboration on key deuterium rates reduces uncertainty on predictions, tightens constraints on (e.g.) N_{eff} [Yeh, Olive, Fields; Yeh, JS, Olive, Fields]

THE LATE EARLY UNIVERSE

[Esteban, Peter, Kim]

PROBES OF THE INHOMOGENEOUS UNIVERSE

- Structure formation is a key probe of low-mass particle DM, especially low-mass DM born out of equilibrium
 - Not just sterile neutrinos!
 - Can also be sensitive to DMbaryon interactions
- New probes of the small-scale matter power spectrum soon from:
 - galaxy surveys (Euclid, Roman)
 - > 21-cm measurements (HERA)

[Dvorkin, Lin, Schutz]

SUMMARY AND CONCLUSIONS

- Direct detection experiments are now probing dark sectors that were outof-equilibrium with the SM in the early universe
- For models with light mediators, the freeze-in line is mass, coupling, and initial-condition dependent and not always well-defined
 - however it is still an interesting and well-motivated experimental target
 - interpreting results can become quite involved: multiple temperatures, initial condition dependence
 - ► (un)fortunately there are interesting models that sit below the freeze-in line
- Models of sub-GeV DM evolve through epochs of our universe where we have observational probes
 - Most of those probes will advance in sensitivity soon: synergy with direct detection program