QUEST-DMC: Probing Dark Matter with Nanowires, Superfluid Helium-3 and Quantum Sensors Paolo Franchini

GUINEAPIG 2023

Montreal,

12 July 2023

200 days of French

Write this in French

Write this in English

Fill in the blanks Le cheval est gentil et les vaches sont gentilles

Outline

- The dark matter hypothesis
- Direct dark matter detection
- QUEST-DMC dark matter search programme
- Bolometry in Helium-3 with nanowires
- Measurement of the deposited energy
- Estimated sensitivity
- Future prospects

Outline

- The dark matter hypothesis
- Direct dark matter detection
- QUEST-DMC dark matter search programme
- Bolometry in Helium-3 with nanowires
- Measurement of the deposited energy
- Estimated sensitivity
- Future prospects

"I was conscious that I knew practically nothing..."

"I was conscious that I knew practically nothing..."

Socrates: 0 books

"I was conscious that I knew practically nothing..."

Socrates: 0 books

Dark matter hep-th: 1300 papers on arxiv

Direct dark matter detection: candidates

Direct dark matter detection: candidates

The dark matter hypothesis

- Evidences from gravitational interactions
 - Spiral and elliptical galaxies: rotation curves
 - Galaxy clusters: gravitational lensing
 - Cosmic Microwave Background
 - Colliding galaxy clusters: x-rays

- No electromagnetic interaction ("dark")
- Stable over billion years
- Non-baryonic: an unknown particle?

The dark matter hypothesis

• Matter and energy content of the universe

• Dark matter is 85% of mass

• Philosophical implications

Paradigm shift?

Copernican revolution

Direct dark matter detection: WIMPs

Nucleus

Μ

WIMP

- Signal: scattering of DM candidates off a target
 - rare processes...
 - ... but many WIMPs
- Backgrounds:
 - Cosmic rays
 - Radioactive environment
 - Radioactive contamination
 - Neutrinos

Recoil energy

~M/1'000'000

Direct dark matter detection: WIMPs

Rep. Prog. Phys. 85 (2022) 056201

https://arxiv.org/abs/2207.07640

QUEST-DMC collaboration and ecosystem

QUEST-DMC programme

- Beyond Standard Model physics investigation
 - Quantum sensors
 - Helium at ultra-low temperatures

1) What is the nature of Dark Matter?

Detection of sub-GeV dark matter with a quantum-amplified superfluid He3 calorimeter

2) How did the early universe evolve?

Phase transition in extreme matter ↔ early universe

- Spin dipendent WIMP-nucleon cross section: 10⁻³⁷ cm² @ 1 GeV/c²
- eV recoil energy threshold
- background < 1 event/kg/day/keV_{DEP}

Helium-3

- Spin ¹/₂ (!)
- Superfluid (1972) below 2.5 mK
- P-wave pairing and multiple superfluid states
- ³He-B:

- Solid (bcc) Pressure (MPa) 3 Superfluid A phase 2 Superfluid B phase Normal liquid Gas 0.0001 0.001 0.01 0.1 10 100 Temperature (K)
- He3 as a fermionic condensate (similar to BSC theory)
- Cooper pairs: composite bosons, 100nm size
- Pair of bound quasiparticles with 10⁻⁷ eV energy and an effective mass

Paolo Franchini

Target

Wet dilution refrigerator

- Still (He4)
 - Heat exchangers
 - **Mixing chamber** •

Mixing

Still

Heat Switch

- He3 concentrate and diluted phases
 - Dilution process absorbs heat
 - Diluted He3 back up in the still
 - Cooling of concentrated in the way

Target

Nuclear demagnetisation refrigeration

Dark Matter events in He3

1.0

0.8

fraction 6.0

0.2

- Collision WIMP-He3 atom
 - Heat: quasiparticle excitations (10⁷/eV)
 - Light: from de-excitation

Nuclear Recoil

triple

Vibrating nanowire

Bolometer response

Detector

27

- Wire oscillating in magnetic field in a He3 cm³ box
- Damping force on the oscillator, enhanced by Andreev reflections
- Voltage response
- Measure **energy deposition** as variation of the resonance width ∆f

Lancaster nanowires

- 1. 200 um copper matrix with 1 um Nb-Ti wires
- 2. Draw the cable in multiple dies
- 3. Etch the copper and replace with water
- 4. Microscope + tweezers
- 5. Replace water with IPA
- 6. Let dry

Paolo Franchini

7. Mount on a PCB

Lancaster nanowires

1/500 of a cat's whisker

Paolo Franchini

Detector

Cells with wires

Quantum sensor

Bolometer in He3

• Deposited energy as variation of the damping force on the resonator

Paolo Franchini

Readout

Lock-in amplifier

- Extract signal (in a defined frequency band) from a noisy background using a reference signal (RMS noise ~ 10 nV)
 - Amplitude
 - Phase

Readout

DC SQUID

Readout

- Superconducting QUantum Interference Device
- Magnetometer, 10⁻¹⁴ T (brain: 10⁻¹³T)
- Magnetic flux into electrical voltage

- Voltage drive applied inductively
- Wire has Z(w) impedance
- Output current I,
- Resulting flux read by SQUID
- Output voltage **V**

Readout sensitivity

• Error on the energy measurement ↔ DM energy threshold

Conventional: 39 eV SQUID: 0.71 eV

Readout

Background

- Cosmic rays
- Radioactive decays
 - Environment
 - Contamination
 - Materials

Alphas Betas Gammas Neutrons Muons

- Neutrinos (irreducible)
 - → Goal: 1 background event/kg/day

Background: radiogenic

- Simulation of the decays
 - Energy deposited in the cm³ He³ cell

- Estimated activity
 - Radiopurity database
 - Screening of the materials

Paolo Franchini

Background: simulation

Paolo Franchini

Background: screening

Boulby Undeground Laboratory (UK) screening measurements:

Material	Up 238 U	Lower ^{238}U	²¹⁰ Pb	Upper 232 Th	Lower 232 Th	$^{235}\mathrm{U}$	$^{137}\mathrm{Cs}$	⁴⁰ K	60 Co	^{54}Mn
Concrete	$< 1.60 \times 10^5$	1.50×10^{4}	1.00×10^7	7.57×10^{3}	7.57×10^{3}	$<7.20{\times}10^3$	800	4.20×10^{4}	< 700	0.00
Aluminium	8.33×10^{3}	15.3	70.7	356	334	60.5	< 0.940	< 3.12	< 1.10	0.00
Superinsulation	679	< 200	$< 3.90 \times 10^{3}$	200	200	4.93	0.00	3.50×10^{3}	400	0
Stainless Steel	16	2.5	82.2	3.1	3.90	0.120	2.00	< 6.20	< 5.20	1.70
Steel	< 12.4	12	1.20×10^{4}	4.88	4.88	3.00	2.00	34.1	30.0	1.00
Araldite	< 3.60	< 4.80	14.5	< 3.40	< 2.20	0.0260	2.00	25.5	8.00	0.00
Stycast	< 10.5	< 9.50	< 14.9	< 12.8	< 6.20	0.0762	2.00	122	10.0	0.00

• Current setup, estimated radiogenic activities:

Component	Expected cor	unts [0-10 keV]	Uncertainty
	/kg/day	/cell/day	
Cosmic ray	1.05×10^5	3.31	$11 \ \%$
Radiogenic ER	8.31×10^4	2.61	14~%
Solar ν ER	1.51×10^{-2}	4.76×10^{-7}	2~%
Solar ν NR	6.37×10^{-4}	2.01×10^{-9}	2~%
TOTAL	1.88×10^5	5.92	

Bolometers in He3

• Bolometer operation limitation

Bolometer in He3: events

Extract:

• Rate of background events

DATA!

- Energy spectrum
- Energy threshold

Paolo Franchini

preliminary **Sensitivity projection** Signal simulation **Sensitivity for Detector** dark matter response model Background simulation 10⁵ 10¹ WIMP mass [GeV/c2] - 0.01 103 0.05 10-1 - 0.1 Rate [events/kg/day] Rate [events/kg/day] - 0.5 cosmic ray — 10 radiogenic — 5.0 neutrino NR 10-3 preliminary ---- 10.0 neutrino ER —— SD WIMP 10-5 10-3 arXiv:2106.06207 10^{-7} 10⁻⁵ 10^{-2} 10-1 10⁰ 10-3 10¹ 10² 10³ 10^{-2} 100 10¹ 10^{-1} 10² Energy [keV] Energy [keV]

Paolo Franchini

preliminary **Sensitivity projection** Signal simulation Detector Sensitivity for dark matter response model Background simulation 10³ 10¹ [%] 10⁻¹ oreliminary 10-3 Lock-in amplifier 10^{-5} SQUID readout ••••• OP shot noise 10^{-1} 101 10³ 10⁵ Energy [eV]

Paolo Franchini

lacksquare

Conclusion and outlook

- Simulation and analysis machinery in place
- Produced a first sensitivity limit, based on actual constructed detector cells and modelled energy reconstruction validated on data (<u>submitted to Nature</u>)
- Next:
 - Compare the model with first round of data
 - Implement light detection in the cell
 - Add cosmic rays tagging

Conclusion and outlook

- SQUID operated at RHUL at LN temperatures
- To be operated at uK tempeatures in Lancaster

Conclusion and outlook

- Work towards SQUID readout of a nanowire
- Start operating He3 cells with nanowires

Great potential for quantum technologies to open up a new window on the dark matter universe

