Latest results from the NEWS-G experiment

Jean-Marie Coquillat

GUINEAPIG 2023, Montréal

July 12th, 2023

Low mass WIMP search motivation

Given the absence of canonical WIMPs, there is motivation to look at the parameter space left at lower masses (~0.1-1 GeV) for WIMP-like dark matter candidates.

NEWS-G and SPCs

- The NEWS-G experiment uses spherical proportional counters (SPC) to search for low mass dark matter.
- SPCs are metallic spheres filled with gas, with a central anode producing a radial electric field.

- Advantages of SPC:
 - Very low threshold (single-ionization)
 - Can use different gases
 - Sphere provides optimal volume/surface ratio

NEWS-G and SPCs

- The <u>last dark matter limits</u> are from the SEDINE detector (60 cm diameter) at the *Laboratoire Souterrain de Modane* (LSM) in 2017.
- There was 42 days of data with neon + 0.7% of methane at 3.1 bars.
- The latest detector, S140 (or SNOGLOBE), is a 135 cm of diameter copper sphere currently at SNOLAB, after a short commissioning at the LSM in 2019.
- SNOLAB commissioning of S140 started in 2022.

S-140 detector model

The SEDINE detector

doi: 10.1016/j.astropartphys.2017.10.009

GUINEAPIG 2023 – Jean-Marie Coquillat – July 12th

How an SPC works:

- Atomic recoil causes ionization of the gas.
- Primary electrons drift towards the central anode.
- Townsend avalanche near the anode amplifies the signal.
- Drifting secondary ions induce a current on the anode.

5

How an SPC works:

- Atomic recoil causes ionization of the gas.
- 2. Primary electrons drift towards the central anode.
- Townsend avalanche near the anode amplifies the signal.
- Drifting secondary ions induce a current on the anode.

Animation by Philippe Gros

Sensor (achinos)

- NEWS-G now uses a multi-anode sensor that can achieve high gain while keeping ٠ a strong electric field at a high radius.
- The sensor is divided in two channels connecting the anodes of each hemisphere. •
- A signal on one channel induces a negative signal on the other one (Shockley-• Ramo effect).
- About 2/3 of the volume leads to the south anodes, due to the effect of the rod • on the electric field.

Sensor (achinos)

- NEWS-G now uses a multi-anode sensor that can achieve high gain while keeping a strong electric field at a high radius.
- The sensor is divided in two channels connecting the anodes of each hemisphere.
- A signal on one channel induces a negative signal on the other one (Shockley-Ramo effect).
- About 2/3 of the volume leads to the south anodes, due to the effect of the rod on the electric field.

Sensor (achinos)

- NEWS-G now uses a multi-anode sensor that can achieve high gain while keeping a strong electric field at a high radius.
- The sensor is divided in two channels connecting the anodes of each hemisphere.
- A signal on one channel induces a negative signal on the other one (Shockley-Ramo effect).
- About 2/3 of the volume leads to the south anodes, due to the effect of the rod on the electric field.

Only pure south events were kept as candidate events.

Shielding and data taking with S140

- The sphere is made of C10100 copper, with the inner 0.5 mm being electroformed ultra-pure copper.
- Lead, archeological lead and polyethylene (PE) make the shielding, although water was used at the LSM since the PE shield was unfinished.
- 10 days of physics data taken in 135 mbar of CH₄ at the LSM before the detector was shipped to SNOLAB.

Laboratoire Souterrain de Modane (LSM)

Copper electroforming

- Even the C10100 copper bulk contains traces of ²¹⁰Pb, which emits bremsstrahlung X-rays through their beta decay.
- The <u>electroforming of the 0.5mm inner copper surface</u> was done in collaboration with the Pacific Northwest National Lab at the LSM.
- This reduces the overall background by 98%, and the sub-keV background by 70%.

Double deconvolution

- Ionization equations: $\langle PE \rangle = \frac{E}{W(E)}$; $W_{nr} = \frac{W_{\gamma}}{QF(E)}$
- Primary ionization follows a COM-Poisson distribution, and the avalanche follows a Polya distribution.
- The exponential decay of the preamplifier and the ion response are deconvolved from the raw signal.
- The integrated double-deconvolved amplitude is proportional to the energy, while the rise time is a measure of the diffusion which relates to the event radial position.

Peak counting and time separation

- With the large sphere of S140, it is possible to count individual primary electrons using ROOT TSpectrum.
- The single-electron trigger efficiency is 60%, with a noise trigger proportion around 10⁻⁴.
- Surface events experience more diffusion than volume events, which causes the time separation between the first and last peak to be larger.
 - tj13s000_nbt_corr_000015 : Double Deconvolved, Light Smoothing

Laser calibration

- A 213nm UV laser is directed at the inner copper surface of the sphere and releases electrons though the photoelectric effect.
- The UV light also goes to a photodetector so the laser events can be tagged.
- Low-intensity laser data enables measurements of the single electron detector response (gain, avalanche statistics, trigger efficiency, peak detection threshold).
- High intensity laser data 2.5 is used in all runs to enable constant monitoring of the detector.
- Gas degradation inducing a decrease in gain can be seen through laser events.

GUINEAPIG 2023

³⁷Ar Calibration

- Some argon-37 is released inside the sphere, and the gas diffuses in the whole volume. ³⁷Ar is produced at the Royal Military College in Kingston, in their SLOWPOKE-II reactor from CaO irradiation.
- This isotope is radioactive and has two main X-ray peaks (270 eV and 2.8 keV). It decays with a half-life of 35 days through electron capture.
- Argon-37 enables: $W_0 = 30.0^{+0.14}_{-0.15} \text{ eV}, \quad U = 15.70^{+0.52}_{-0.34} \text{ eV}, \quad F = 0.43 \pm 0.05$ L1-shell electron capture Energy calibration 0 Electrons 300 PRELIMINARY ³⁷Ar Data 10⁵ Photons 250 Electron attachment 0 10⁴ 200 150 µq/# parametrization 10³ 270 eV uiq/# 10² W-value and Fano 0 2.8 keV peak 100 factor measurements peak -50 10¹ South-channel 0 Risetime 20-90% Hist 250 10⁰ anodes gain measurements 10^{-1} 0 2000 4000 6000 8000 10000 12000 14000 50 100 150 250 зóо 200 Energy [eV] doi:10.1088/1742-6596/2156/1/012059 Vew GUINEAPIG 2023 – Jean-Marie Coquillat – July 12th 15

Quenching factor

- The quenching factor was measured at COMIMAC as well as obtained from literature W-values.
- Lower energy quenching factor were extrapolated logarithmically (more conservative).
- Future quenching factor measurements for lower energies and other gas mixtures in preparation.

16

Alpha contamination

- There is ~25 mHz of alphas from ²¹⁰Po contamination in the copper surface.
- Alphas ionize a lot of gas and create a space charge that disturbs the electric field, and changes the electron drift time.
- For some still unknown reason, a high rate of low energy events keep happening for around 5s after each alpha.
- We remove 70% of the low-energy background with a 5s cut after each detected alpha, keeping 88% of the total time.

Pulse shape discrimination

- There are spurious pulses caused by electronic discharges in the data.
- Those can be discriminated from physical events with two different methods:
 - Spurious pulses are either measurably spikier or wider than physical events.
 - Spurious pulses do not cause a negative induced pulse on the opposite channel.
- Around 95% of the spurious pulses are removed with cuts usings theses discriminants, while still keeping 77% of the physical events.

Physics data fits

- 30% of the full data was set aside as a test data before the rest is unblinded.
- Profile likelihood fits of the test data were made for 2-3-4 peak data.
- Fits with contributions from volume background, surface background, coincidences and WIMP signal.
- No significant WIMP signal was detected.

Preliminary limits

- WIMP exclusions limits with ~0.12 kg·days of data
- Strongest constraints for the proton spindependent interaction in the 0.2 - 1.5 GeV range.
- Final blind data results to come in a few weeks.

News from SNOLAB

- One physics data campaign taken, preparing the next one
- Still countable electrons
- Improvements from LSM:
 - Trigger on three channels (North, South, PD)
 - Reduced noise
 - No spurious pulses
 - Better gas purity
 - Neon+2%CH₄, CH₄,
 Ar+CH₄, He+CH₄ etc.

Vew

GUINEAPIG 2023 – Jean-Marie Coquillat – July 12th

SNOLAB noise

- Multiple improvements (dampening vibrations, better electronic isolation) across months slowly reduced the background noise.
- Better gas quality was shown to reduce the alpha induced background.
- Expected improvements for the rest of the year:
 - Second etching

• New gas purifier

• New radon trap

New sensors

0

SNOLAB space charge

• Additional studies on the space charge effect show how the electron drift time decreases when the laser intensity or laser rate is increased.

• Also: ongoing analysis on the effects of alphas and space charge on rate and gain. TBC

GUINEAPIG 2023 – Jean-Marie Coquillat – July 12th

Future DM projects

ECuME

- Fully underground electroformed 140 cm of diameter copper sphere to be made inside SNOLAB.
- Mini-ECUME prototype with 30 cm of diameter to be built during the second half of 2023 at PNNL.
- Last tests before Mini-ECUME currenlty being completed.

GUINEAPIG 2023 – Jean-Marie Coquillat – July 12th

DarkSPHERE

• Fully electroformed 3m of diameter sphere in a water shield for the Boulby Underground Laboratory, in England (under consideration).

Neutrino research

NEWS-G³ (or G3)

- Shield at Queen's University intended for CEvNS detection at nuclear reactors.
- The shield is comprised of multiple layers of lead, polyethylene, scintillators (muon veto) and copper. It was completed last summer.
- Tests, simulations and calibrations are currently being done at Queen's. TopBack RightBack RightFront TopFront

Conclusion

• NEWS-G and SPCs well suited for low mass dark matter search.

• LSM data able to set new SD-p WIMP constraints with CH₄.

• Currently taking physics data at SNOLAB with many improvements.

• Promising future projects in the works.

GUINEAPIG 2023 – Jean-Marie Coquillat – July 12th

