

Update on the Montreal X17 Search Experiment

V. Zacek, Université de Montréal

- The ATOMKI Anomalies in ⁸Be*, ⁴He*, ¹²C*
- The X17 boson & theor. interpretations
- Ongoing & planned verifications
- The X17 project at U. of Montreal

GUINEAPIG 2023 Workshop on Light Dark Matter Université de Montréal, July 11 – 13, 2023

A 7σ Evidence for a New 17 MeV Boson?

- Photo-production in ⁸Be* via $p + ^7$ Li reaction with high statistics
- Fraction of γ 's converted into e⁺e⁻ by Internal Pair Conversion (IPC)
- Measure angular distribution of e⁺e⁻ pairs
- Photons produced on resonance (M1) & by direct rad. capture (E1)

- Photo-production in ⁸Be* via $p + ^7$ Li reaction with high statistics
- Fraction of γ 's converted into e⁺e⁻ by Internal Pair Conversion (IPC)
- Measure angular distribution of e⁺e⁻ pairs
- Photons produced on resonance (M1) & by direct rad. capture (E1)

ATOMKI @ Institute for Nuclear Research, Debrecen, Hungary 4 2MV Tandetron

- Photo-production in ⁸Be* via $p + ^7$ Li reaction with high statistics
- Fraction of γ 's converted into e⁺e⁻ by Internal Pair Conversion (IPC)
- Measure angular distribution of e⁺e⁻ pairs
- Photons produced on resonance (M1) & by direct rad. capture (E1)

ATOMKI @ Institute for Nuclear Research, Debrecen, Hungary 5 2MV Tandetron

(Graphics J. Feng et al; arxiv:1707.09749) A. J. Krasznahorkay et al.; *Phys. Rev. Lett.* **116** no. 4, (2016) 042501, arXiv:1504.01527 [nucl-ex].

⁸Be* - Decay and Internal Pair Creation (IPC)

⁸Be* - A Particle Physics Lab ?

Promising environment to search for new physics at MeV-scale !

....complementary to accelerator and astroparticle searches

A. J. Krasznahorkay et al.; *Phys. Rev. Lett.* **116** no. 4, (2016) 042501 A. J. Krasznahorkay et al.; Acta Physica Polonica B, Vol.50 (2019)

The ATOMKI ⁸Be* - Experiment 2016/18

$$\frac{\Gamma(\ ^8Be \rightarrow \ ^8Be X)}{\Gamma(\ ^8Be \rightarrow \ ^8Be \gamma)} = 5.6 \times 10^{-6}$$

Scale of coupling $\varepsilon \sim 10^{-3}$ times electric \rightarrow BSM !

The ATOMKI ⁸Be* - Experiment 2016/18

An important variable: the energy asymmetry

Asymmetry consistent with the decay of a new particle

The ATOMKI ⁸Be* - Experiment 2016/18

Opening angle, asymmetry and invariant mass consistent with decay of a new particle

 $M_x = 16.7 \pm 0.35$ (stat) ± 0.5 (sys) MeV

....what Particle could it be?

Transition	Vector $(J_X^{\pi} = 1^-)$	Axial vector $(J_X^{\pi} = 1^+)$	Scalar $(J_X^{\pi} = 0^+)$	Pseudo scalar $(J_X^{\pi} = 0^-)$
⁸ Be: 1 ⁺ 0 ⁺ M1-IS	L=1	L=0,2		L=1
⁸ Be: 1 ⁺ 0 ⁺ M1-IV	L=1	L=0,2		L=1
⁴ He: 0 ⁻ 0 ⁺ M0		L=1		L=0
⁴ He: 0 ⁺ 0 ⁺ E0	L=1		L=0	
¹² C 1 ⁻ 0 ⁺ E1	L=0,2	L=1	L=1	

- But for AV theory predicts for Be/He widths differing by factor 10², maybe uncertainty in nuclear matrix el. ?
 J. L. Feng, et al, *Phys.* arXiv:2006.01151 [hep-ph].
- Also PS (0⁻) difficult to reconcile w. Be & He
- ¹²C also interesting....see later & if seen then PS excluded

X17 with $J^{\pi} = 1^{+/-}$ could fit the bill!

Maybe a Dark Photon A' $(J^{\pi} = 1^{-})$?

- Interaction with ord. matter mediated by "dark " A'
- Gauge boson A' mixes kinetically with γ and $\varepsilon \sim 10^{-3}$
- A' coupling to SM particles prop. to ε and SM charges: εeQ_f
- Vector mediator decays to low mass WIMPs

But

But it cannot be the Standard Dark Photon

J. L. Feng, et al, Phys. arXiv:2006.01151 [hep-ph].

J. L. Feng, *Phys. Rev.* **D95** no. 3, (2017) 035017, arXiv:1608.03591 [hep-ph].

Butit cannot be the Standard Dark Photon

J. L. Feng, et al, Phys. arXiv:2006.01151 [hep-ph].

Na64 Eur. Phys. J. C (2020) 80:1159

....Recent Theoretical Insight (2021 +)

 If X17 protophobic, then its production in Be should be dominated by direct capture E1 transitions for all beam energies above the 17.6 MeV resonance!

(X. Zhang, G.A. Miller - Physics Letters B 813 136061 (2021))

 BTW: Also in ⁴He expect E1 direct capture contribution (M. Viviani et al. - Phys. Rev. C105,014001 (2022)

ATOMKI ⁸Be* Off - Resonance Results (2022)

N.J. Sas et al. arXiv: 2205.07744

- Protons @ 450, 650, 800, 1100 keV •
- Peaks around 140[°] correlate w. E1 • contribution, rather not w. M1

Ep (keV)	m _o c²(X17) (MeV)	E1/M1	X17/E1
450	16.6(3)	0.04	0.14(16)
650	16.94(14)	0.14	0.05(3)
800	16.81(9)	1.05	0.053(14)
1100	17.11(12)	0.44	0.041(13)

...at variance with 2016/18 data, but maybe explained by a better understanding of target & bckg effects?

ATOMKI ¹¹B(p,e⁺e⁻)¹²C^{*} (2022)

Suggested by J. Feng et al., Phys. Rev. D102, 036016 (2020)

E1 IPC following radiative capture?

X17 branching ratio relative to E1 contribution appears constant

Average mass 16.88 (0.15 MeV) ...PS (0⁻) ruled out

A.J. Krasznahorkay, TRIUMF Workshop '22 <u>https://meetings.triumf.ca/event/262/timetable/#20220525</u> A. J.Krasznahorkay et al; Arxiv 2205.7744

Most Recent Theoretical Insight (2023)

- AV (1⁺) can explain Be/He
- Tension with ¹²C, but matrix el. unknown
- Compatible with $(g-2)_{\mu}$ and KTEV anomaly $(\pi^+ \rightarrow e^+ e^-)$ D. Barducci, C. Toni (arXiv:2212.06453v June 2023)*:
- Protophobic V (1⁻) excluded by limits on $\pi^+ \rightarrow e^+ \nu_e X$
- V (1⁻) coupling in Be/He in 4σ tension w. ¹²C
- AV (1⁺) remains, but strongly constrained by SINDRUM, PIENU
- Large uncertainties in AV nuclear matrix elements

M. Hoster, M. Pospelov (arXiv:2306.15077 June 2023):

 10^{-5} "protophobic" ($\varepsilon = 10^{-2}$) 10^{-6} 10^{-7} $\rightarrow e^+ \nu_e X)$ SINDRUM $(X \to e^+e^-)$ 10^{-8} PIENU $(X \to inv)$ 10^{-9} $\mathcal{B}(\pi^+$. 10^{-10} 10^{-11} dark photor $(\varepsilon = 10^{-2})$ $10^{-12} +$ 90 110 10 30 5070 $m_X/({\rm MeV})$

Independent exp.

verification needed!

Where Else Can We look?

Dark photon searches @ accelerators and beam dumps

Darklight @ Ariel, TRIUMF 30 MeV 2023; 45 -50 MeV 2024 JlabX17@Jefferson L., 2 – 3 GeV e⁻; > 2023 MAGIX@ MESA, Mainz - operates > 2024/25 LDMX@JLAB/SPS? - operates > 2024, statistics! NA64 @CERN/SPS – needs detector upgrade, statistics! PADME@Frascati - to reach sensitivity needs modif. ...also Belle II: $D^{+*} \rightarrow D^{+} + A'$; $A' \rightarrow e^+e^-$; statistics! >2025 LHCb: ; $D^{0*} \rightarrow D^{0} + A'$; $A' \rightarrow e^+e^-$ after upgrade 2025 MAGIX: $vd \rightarrow pn + A' \rightarrow e^+e^- > 2024/25$

Window of opportunity for fast moving new intitatives !

Other Ongoing Efforts

Nuclear physics verifications

MEGII @PSI $^{7}Li(p, X17)$ ^{8}Be MeV Cockroft Walton Tracking DCH, LXe Taking data

NUCLEX @ LNGS ${}^{3}H(p,X17) {}^{4}He$ $I_{p} = 100 \ \mu A$ Dedicated detector Lol 2022

N_Tof @ CERN ${}^{3}He(n, X17) {}^{4}He$ Pulsed n- beam Dedicated detector Lol 2022 **COPE** @ IEAP – CTU Prague ${}^{7}Li(p, X17) {}^{8}Be$ 2.5 MeV Van de Graaff Mag. spectrometer ATOMKI \rightarrow IEAP Vertexing with Timepix 3

NewJedi @ IJCLab, GANIL, Ithemba ${}^{7}Li(p, X17) {}^{8}Be; {}^{3}H(p, X17) {}^{4}He$ Vertexing w. DSSSDs; E- plastic scints. Ongoing

Project X17 @ U. Montreal ⁷Li(p, X17) ⁸Be;⁷ $Li({}^{3}He, X17)^{10}B$ DAPHNE vertex chamber; E- plastic scints 0.95 4 π Ongoing

The Montreal X-17 Project

G. Azuelos¹, B. Broerman², D. Bryman³, W.C. Chen¹, L. Desmarais¹, L. Doria⁴, M. Francois¹, A. Gupta¹, L.-A. Hamel¹, M. Laurin¹, K. Leach⁵, H. de Luz⁶, J.P. Martin¹, F. Nadeau¹, H. Nozart¹, A. Robinson¹, N. Starinski¹, R. Sykora⁶, D. Tiwari⁷, P.A. Tremblay, U. Wichoski⁸, V. Zacek¹,

¹U. Montreal, ²Queens U. ³UBC, ⁴U. Mainz, ⁵C.S. Mines, ⁶CTU Prague, ⁷U. Regina, ⁸Laurentian U.

Main goals:

- Verification of ATOMKI results
- Increase acceptance $\rightarrow 0.95 \times 4\pi$
- Improve statistics & angular resolution
- Eventually extend to other nuclei: ¹⁰B, ¹²C, ⁴He...

UdeM 6 MV Tandem Van de Graaff Facility

- E resolution of 2 Kev for E_p = 0.4 - 1 MeV
- Dedicated Beam Line for X17 – project
- 2 μA proton beam on target (possibly up to 20 μA)

The Montreal X-17 Project

Motivation #1: Other nuclei!

	N_*	$J^{P_*}_*$	T_*	Г	$_{N_*}$ (keV)
$^{7}Li(n v)$ ⁸ Re	$^{8}\text{Be}(18.15)$	1+	0	M1 IV	138
D(p, r) DC	$^{8}\text{Be}(17.64)$	1+	1	M1 IS	10.7
$^{11}B(p,\gamma)^{12}C$	$^{12}C(17.23)$	1-	1	E1 IV	1150
3	$^{4}\text{He}(21.01)$	0-	0	M0	840
°H(p, γ) *He	${}^{4}\text{He}(20.21)$	0+	0	E0	500
	¹⁰ B(19.3)	2- (-3+)	1	E1	280
⁷ $Li(^{3}He,\gamma)^{10}B$	$^{10}B(18.1)$	$2+(-1^+)$	1	M1	< 600
	$^{10}B(18.4)$	2- (-3+)	1	E1	280
	$^{10}B(17.0)$	1- (-2+)	1	E1	280

• ³He beam available at Montreal

Motivation #2: Explore Giant E1 Resonance in Be*!

A.C. Hayes et al - https://arxiv.org/abs/2106.06834 (June 2021) X. Zhang, G.A. Miller - Physics Letters B 813 136061 (2021))

- GDR's are collective oscillations of protons against neutrons (discovered in photonuclear reactions, C. Baldwin, '47)
- GDR excited by proton S-wave capture into ⁸Be* &¹²C* → decay by E1 gamma emission
- Higher energies \rightarrow smaller θ_{+}

Proton beams with required energies available @ Montreal VdG

Motivation #3: Increase Angular Acceptance!

M. Viviani et al., arXiv:2104.07808v1

If X17 produced in direct E1capture (⁸Be, ⁴He, ¹⁰B, ¹²C..) Polar angular distribution of the e⁺e⁻ pair depends on the X17 quantum numbers Large angular acceptance allows discrimination btw. different options Aim at close to 4π solid angle coverage

The Montreal X-17 Project

- Uses parts of the DAPHNE experiment (Saclay/Mainz)
- Tracking MWPC chamber & 16 scintillators (NE102A)
- Scints & MWPC generousely provided by U. Mainz (Ge)*
- Phototubes, bases and ADC/TDC's borrowed from TRIUMF*

*Many thanks to L. Doria & U. Mainz D. Bryman & TRIUMF

Status of Scintillator System

- All scintillator bars instrumented
- PMT gains approx. adjusted
- Gains later fine-tuned offline

Cosmics Run w. Scintillators

- 4- fold coincidence with Cosmics
- Attenuation length 5 m < L_{att} < 10 m
- DAPHNE: L_{att} = 6 m (O. Jahn Dissert., Mainz 2005)
- Gains adjusted

The DAPHNE Tracking Chamber

- ID 12 cm / OD 14 cm Length 36 cm
- Cathode-anode distance: 4 mm;
- 192 Anode wires: 20 µm diam; spacing: 2mm
- 60/68 cathode strips at 45^o w.r. to wires; width 4mm
 Gas mixture: magic gas »*

External strip (O. Jahn Dissert., Mainz 2005)

Figure 2.11. MWPC: Reconstruction of the

- Angular res.: $\Delta \theta \sim 2^0$ (FWHM)
- Low density material to avoid EPC!

2nd larger chamber (can be added later...)

- ID 24.8 cm / OD 26 cm Length 76cm
- 384 Anode wires/ 124/132 strips

The DAPHNE Tracking Chamber

- ID 12 cm / OD 14 cm Length 36 cm
- Cathode-anode distance: 4 mm;
- 192 Anode wires: 20 μm diam; spacing: 2mm
- 60/68 cathode strips at 45[°] w.r. to wires; width 4mm
- Gas mixture: magic gas »*

* 74.5% Ar, 25% Ethane, 0.5% Freon

- Angular res.: $\Delta \theta \sim 2^0$ (FWHM)
- Low density material to avoid EPC!
 - 32 ch./ preamp card
 - For wires & strips
 - 1V/picoCb
 - Read by VF48 DSP

Cosmics Ray Signals in MWPC

- Wire signals only
- Trigger from cosmics through 2 scintillators

Read-Out & DAQ

Status Set-UP

Beam & Target:

- 10 µA on target demonstrated
- 500 nm LiF on 10µm Cu backing

p - beam

• Cooling w. heat pipe (T < 70°)

MWPC:

- Wires r/o with preamps & DAQ
- Testing strip r/o ongoing
- 3 x 32 channels ready
- 352 channels total \rightarrow 10 VF48

Scintillators:

- All 16 scints. installed & calibr.
- Gains adjusted; histos taken w. cosmics & DAQ (VF48)
- diff. trigger conditions ok

Test – Beam Measurements

Exploring Be* physics

- 0.8 mm thick C-beam pipe
- Target: 0.2 μm LiF (52 μg/cm²)
- Beam current: $I_p = 2 \mu A$
- γ spectra with BGO , HPGe
- 478 keV line serves as reference

Next: 1st Physics Test Run

- Initial run at 18.15 MeV ⁸Be* resonance
- With 2 sectors covering 60°
- Angular range 0° 60° and 120° 180°
- Test full R/O chain & DAQ
- Calib. with 6.15 MeV e^+e^- IPC from ${}^{19}F(p,\alpha\gamma){}^{16}O$ •

Geant 4 Simulations: Acceptances

G. Azuelos, J. Pothier-Leboef (U. Montreal) K. Leach, I. Bisset (Colorado School of Mines)

Geant 4 Simulations: Reconstruction

26-May-2022

Geant 4 Simulations: Reco Invariant Mass

Geant 4 Simulations : ⁸Be* (IPC & X17)

Full detector geometry:

- M1- IPC: E_v = 18.15 MeV
- $\Delta\theta \sim 2^0$ (FWHM); $\Delta E/E \sim 7.4\%/\sqrt{E}$
- |y| < 0.45; m(ee) > 12 MeV/c²

•
$$B(X/IPC) = \frac{B(X/\gamma)}{B(IPC/\gamma)} = \frac{5.8 \times 10^{-6}}{3.9 \times 10^{-3}} = 1.5 \times 10^{-3}$$

• Signal/Background in region of interest:

 $S/B \approx 0.6$

 $(135^0 \le \theta \le 180^0)$

•later optimization w. neural net analysis

Geant 4 Simulations : ⁸Be* (IPC & X17)

41

The Montreal X-17 Project - Timeline

Summary

- Intriguing results by the ATOMKI collaboration in Be*, He*, (C*?)
- UdeM experiment for independent & timely verification
- Extend to other states & nuclei: ¹⁰B(17.8), ¹²C (17.2)....E1 GDR's (?)
- Large solid angle increases coverage of param. space (V, AV P, PS)
- Collaborators welcome!

Ps

103

From: Georges Azuelos [view email] [v1] Mon, 21 Nov 2022 22:57:47 UTC (5,081 KB)