Sub-GeV DM Detection using Superconducting Tunnel Junction (STJ) Sensors

Geon-Bo Kim Lawrence Livermore National Laboratory

GUINEAPIG Workshop, Montreal, Canada July 13, 2023

LLNL-PRES-851340

Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD program under Project No. 20-LW-024.

DM/Neutrino Activities at LLNL

Dark Matter Detector R&D

- LZ (GeV)
- ADMX (Axion)
- MAGNETO-DM (Sub-GeV)

Neutrino

- nEXO (0nbb)
- Prospect (short baseline)
- Project 8 (neutrino mass)
- BeEST (sub-MeV sterile)
- MAGNETO-nu (keV sterile)

Cryogenic Particle Detectors with Crystals

Phonon Sensor (TES, MMC, NTD Ge, STJ, KID, etc.)

Optimization:

- Sensor energy resolution
- Type of crystals
- Phonon collection efficiency
- Particle identification if applicable

Low Energy EXCESS

NISA

Lawrence Livermore National Laboratory

Low Energy EXCESS

- Most of low threshold cryogenic detectors experience excessive background rates at E < 150 eV region.
- Understanding and mitigating the excess background is one of the top R&D priorities.
 - \rightarrow Will fast phonon sensor help for understanding the origin?

Low Energy EXCESS – Origin?

Phonon Sensor (TES, MMC, NTD Ge, STJ, KID, etc.)

Questions for understanding EXCESS

- Nuclear or electron recoil?
- Thermal or athermal?
- Surface or bulk?

Fast phonon sensor can help understanding EXCESS → Let's build DM detectors with fast sensors

Fast Phonon Sensing for Understanding EXCESS

Phonon Sensor (MMC or STJ)

Optimization list: Optimization:

- Sensor energy resolution MMC (~10 eV) vs STJ (~1 eV)
- Type of crystals and phonon collection efficiency MMC-based crystal screening program (MAGNETO-x)
- Particle identification if applicable
 Fast phonon sensing will improve pulse shape discrimination

Fast Phonon Sensors at LLNL

LLNL develops "fast" cryogenic sensor technologies for nuclear non-proliferation applications

	Metallic Magnetic Calorimeter (MMC)	Superconducting Tunnel Junction (STJ)	
Sensor material	Paramagnet (Au:Er, Ag:Er)	Al-AlO-Al junction	
Measurement	Total magnetization	Tunneling current	
Readout	Quantum magnetometer (SQUID)	JFET Current amplifier	
Detector Material	Most of any materials	Superconductors	
Resolution	O(10 eV, for LLNL technologies)	O(1 eV, for LLNL technologies)	
Speed	O(100 ns)	O(1 us)	

MMC with Crystal Absorbers

Pulse Shape Discrimination.

Applications:

- Dark Matter Detection
- Reactor monitoring via neutrino detection

STJ Working Principle

- Completely insensitive to thermal phonons (~1 meV band gap)
- Short excess charge life-time (~μs)

"BeEST" Experiment with STJs

- Implant radioactive ⁷Be into STJ detectors
- Measure nuclear recoil energy of ⁷Li daughter

- Heavy sterile neutrinos would reduce ⁷Li recoil
- No quenching was observed

keV Sterile Neutrino Searches (Warm Dark Matter Candidate)

BeEST Low Energy Data – Ta events (anti-coincidence)

13

DM Search using Ta Absorbers

Motivation: Existing ~1eV threshold detector. Minimal R&D cost.

36-pixels Ta-STJs

Or, further R&D for lowering energy threshold

Та	Tc(K)	Δ (meV)	E _{th} (eV)
Та	4.4K	1	2
Al	1.2K	0.2	0.4
Hf	0.13	0.02	0.04

DM Search using STJ Pixels

Maybe too low detector mass?

BeEST Low Energy Data – Substrate Crystal Events (coincidence spectra)

BeEST Low Energy Data – Substrate Crystal Events (coincidence spectra)

Crystal Selection (Phonon collection efficiency)

Phonon collection efficiencies are measured for various substrate crystals, using magnetic sensors

Compare sensor direct hit and crystal hit events, to extract phonon collection efficiency

- Sensor response: 0.8 μs Athermal collection time: 4.2 μs
- Athermal collection efficiency: 28.8%
- Thermal phonon contribution: 16.2% Energy loss to substrate: 45.1%

Crystal Selection (Phonon collection efficiency)

High athermal/thermal ratio indicates higher efficiency of athermal phonon collection

	Sapphire	SC-CVD	PC-CVD	Silicon
Athermal	76%	42%	Very high	29%
Thermal	15%	47%	low	16%
Loss	9%	11%	~10%	45%

Diamond crystals are from SLAC (Noah Kurinsky and OSU (Harris Kagan)

DM Search using Diamond Substrates

- STJs used in BeEST experiment exhibit ~2 eV energy threshold (no quenching for NR)
- DM detection sensitivities using STJ pixels (low mass, lower threshold) and substrate crystals (higher mass, higher threshold) are calculated
- Two options might be considerable.
 - Use existing BeEST detectors (Ta-STJs) for spanning sub-GeV region, for a costefficient experiment.
 - Develop Hf-STJs on diamond (or sapphire) substrates for surveying more relevant DM cross-section region.

MMC with Crystal Absorbers – Diamond Crystals

- Diamond crystal detector
- 80 eV FWHM @ 8 keV X-ray
- 160 eV FWHM @ 60 keV gamma

Diamond+MMC is a very promising detection method for dark matter and reactor neutrinos

